首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The recent development of polymer‐induced pretilt angle in multi‐domain vertical‐alignment liquid‐crystal (LC) structures is reviewed. To create a small but well‐defined pretilt angle, ~0.1 wt.% of a photo‐curable monomer was mixed in an LC host and a bias voltage was applied to reorient the LC directors within each domain. The monomers are polymerized near the substrate surfaces by UV exposure. The formed polymer layers change the surface pretilt angle of the LC from 90° to about 89° with a defined azimuthal orientation. Consequently, within each domain the LC reorientation direction responding to the external field is well‐defined which leads to faster rise time and higher transmittance. This new technology overcomes the long standing problems of conventional MVA devices and is therefore expected to play a dominant role in the future.  相似文献   

2.
Abstract— An advanced vertical‐alignment liquid‐crystal (VA‐LC) technology based on field‐induced photo‐reactive alignment (FPA) as an advanced alignment mode for VA is proposed. FPA realizes uniform alignment and a faster rising response time, especially at high voltage. This technology can generate a pre‐tilt angle only by using photo‐reactive alignment material so that the tact time is shorter and the long‐term reliability is higher than that of conventional photo‐reactive processes, which require additional photo‐reactive monomers. The advanced hybrid FPA was developed by adopting both the tilted alignment with a pre‐tilt angle and conventional vertical alignment. By using an advanced hybrid structure, the response time and contrast ratio can be further improved.  相似文献   

3.
Curved liquid crystal display (LCD) suffers from an issue of uneven brightness among the vertical‐alignment LCD panels based on thin glass substrates. In this work, we investigated its origin through optical simulation and successfully realized uniform brilliance for 27‐inch curved LCD panels. The optical simulation revealed that the dark areas on the bending sides of the curved LCD panel originated from the reduced azimuth angle of the liquid crystals (LC) next to the ITO trunk. This issue could be resolved by decreasing the pretilt angle of the LC on the color filter side. Through developing pretilt angle tuning technologies, we experimentally verified that the uniform brilliance could be achieved for 27‐inch curved LCD panels with 900‐mm curvature on thin glass substrates.  相似文献   

4.
In this work, the very thin layer‐by‐layer (LBL) film that was constructed by dip coating method on indium tin oxide surface can be used in liquid crystal (LC) displays devices. The obtained results indicate that the ultrathin LBL film shows the homeotropic alignment layer, and a uniform vertical alignment of LC molecules was gained very easily. The progress of vertical‐aligned LC cells with a LBL layer was evaluated. The obtained threshold voltage and response time of the LC cell were 2.472 V and 12.5 ms, respectively. So, the competitive performance of the LC cell could allow new sign at a low‐cost budget with rubbing process in LC display technology.  相似文献   

5.
Abstract— A novel pixel design for vertical‐alignment LCDs with superior transmittance has been developed. The new liquid‐crystal mode, refered to as the hole‐induced vertical‐alignment mode (Hi‐VA), uses a via hole of an organic layer on a TFT substrate to achieve multi‐domain alignment. Compared to the conventional design, the Hi‐VA mode has a transmittance of up to 135% with a contrast ratio of 2000:1. Moreover, the new structure is free from ITO patterning or protrusion on the color‐filter side, which makes the fabrication process simple and low cost.  相似文献   

6.
Abstract— Based on the drop‐on‐demand characteristics of ink‐jet printing, the multi‐domain alignment liquid‐crystal display (LCD) could be achieved by using patterned polyimide materials. These polyimide ink locations with different alignment procedures could be defined in a single pixel, depending on the designer 's setting. In this paper, we combined the electro‐optical design, polyimide ink formulation, and ink‐jetting technology to demonstrate the application of multi‐domain alignment liquid‐crystal display manufactory. The first one was a multi‐domain vertical‐alignment LCD. After the horizontal alignment material pattern on the vertical alignment film, the viewing angle would reach 150° without compensation film. The second one was a single‐cell‐gap transflective LCD within integrating the horizontal alignment in the transmissive region and hybrid alignment in the reflective one in the same pixel. In addition, this transflective LCD was also demonstrated in the form of a 2.4‐in. 170‐ppi prototype.  相似文献   

7.
Abstract— A new optical rewritable (ORW) liquid‐crystal‐alignment technology has been developed to create a display and to demonstrate its maturity and potential. ORW displays have no electrodes and use polarizers as substrates. The display requires no photolithography on plastic. Its simple construction secures durability and low cost for mass production. The on‐screen information is optically changed in a writing unit that consists of an LCD mask and an exposure source that is based on LEDs, low power, and low cost in comparison with Hg lamps or lasers. A high contrast image can be easily written, viewed, and rewritten through a polarizer, while the multi‐stable gray‐level image requires zero power to maintain the image. Reconfigurable LC alignment using ORW technology best suits plastic‐card displays as well as for LC photonics and various one‐mask processes of patterned LC‐alignment applications.  相似文献   

8.
The generation of a liquid‐crystal (LC) tilt angle on a copolymer with chalconyl and cholesteryl moiety characteristics was performed, and the electro‐optical (EO) performance of the photoaligned vertical‐alignment (VA) 1/4 π cell by polarized UV exposure on a homeotropic photopolymer surfaces was studied. The LC tilt angles decreased as UV exposure time increased on the copolymer surfaces. A tilt angle of 87° in NLC was observed with an UV exposure of 3 min on the photoalignment‐2 surface. The LC tilt angle is attributed to increased chalcone moiety with increasing UV exposure time. Excellent voltage‐transmittance (V‐T) curves of the photoaligned VA 1/4 π cell by polarized UV exposure on the photopolymer surface for 3 min containing a cholesteryl moiety of 8% were obtained. The V‐T and response‐time characteristics can be improved by the presence of a cholesteryl moiety in the photopolymer.  相似文献   

9.
The liquid‐crystal (LC) alignment properties of polyamide films exposed to ultraviolet (UV) light were investigated. It was found that the uniform and stable alignment of LC molecules was achieved on films of aromatic polyamides exposed to linearly polarized UV light, even though these polymers contained no common photoreactive group such as cinnamoyl, coumarin, or azo chromophore. The alignment was induced in the same direction, which was perpendicular to the electric‐field vector of the linearly polarized light. The change in the UV‐visible absorption spectra before and after UV exposure suggested that the photoreaction of aromatic polyamide occurred only on the film surface, and that even such a small change in the film was enough to induce uniform alignment of the LC molecules. Furthermore, it was suggested that the photoreaction of this system was accelerated in the presence of oxygen. This paper also deals with the effect of the chemical structure of polymers on their LC photoalignment characteristics, i.e., the sensitivity of the photoinduced LC alignment. As a result, polymer materials with excellent LC photoalignment sensitivity have been determined, which could induce the uniform and unidirectional LC alignment by irradiation of 0.2–0.5 J‐cm?2 of linearly polarized 313‐nm light. In addition, the alignment of the LC cell was found to be thermally and optically stable.  相似文献   

10.
Abstract— Photostability of liquid‐crystal (LC) materials and surface alignment layers was evaluated using a UV lamp and a blue laser beam. Both organic polyimide (PI) and inorganic silicon‐dioxide (SiO2) alignment layers were studied under nitrogen environment. Two commercial TFT‐grade LC mixtures (low‐birefringence MLC‐9200‐000 and high‐birefringence TL‐216) were used for comparisons. Results indicate that SiO2 alignment layers are much more robust than PI layers, and low birefringence LCs are more stable than the high‐birefringence ones. At the He‐Cd laser wavelength (λ = 442 nm), both LC mixtures and SiO2 alignment layers are hardly damaged. To lengthen the lifetime of an LCD projector, inorganic SiO2 alignment layers, high‐optical‐density UV filter, long cutoff‐wavelength blue filter, and short‐conjugation (low birefringence) LC materials should be considered.  相似文献   

11.
In this article, we demonstrate the liquid crystal (LC) alignment characteristics of solution‐derived nickel oxide (NiO) film modified with ion‐beam (IB) irradiation. Cross‐polarized optical microscopy and pretilt angle measurements verified that uniform LC alignment was achieved using the NiO film as an alignment layer regardless of IB incidence angle. Contact angle measurements revealed that all of the NiO films had a deionized water contact angle below 90°, which indicates that they had hydrophilic surfaces that had an effect on the homogeneous LC alignment. Atomic force microscopy was conducted to determine the physical surface modification due to the IB irradiation, which showed that it reduced the size of the surface grains with agglomerations depending on the surface tilt from the IB incidence angle. Furthermore, microgroove structures strongly related to uniform LC alignment were observed after IB irradiation. Chemical surface modification was investigated via an X‐ray photoelectron spectroscopy analysis which revealed that IB irradiation modified the chemical bonds in the NiO film, and this affected the LC alignment state. Thus, these results indicate that using NiO film exposed to IB irradiation as an alignment layer is a suitable method for LC applications.  相似文献   

12.
Abstract— Polymer stabilization is introduced in VA‐type LCDs, and fast response time can be achieved along with a high contrast ratio.1 A small amount of reactive monomer is mixed with liquid crystal and forms a polymer layer above the alignment layer by using a UV process. The pre‐tilt angle of the liquid crystal is stabilized, and a faster response time can be realized when the bias pre‐tilt angle from 90° is increased. The properties of reactive monomers and liquid crystal and the conditions of the UV process were studied. Based on the application of the proper monomer and LC, and an optima UV process, a 65‐in. 240‐Hz full‐HD TFT‐LCD, with a faster response time and high contrast ratio, has been developed.  相似文献   

13.
Abstract— Bistable displays are known to have low‐power consumption, but they usually lack the ability to display full‐color video‐rate images. Operating active‐matrix liquid‐crystal displays (AMLCDs) with an ultra‐wide refresh‐rate range, down to ~1 Hz, can lower the power consumption to that of bistable devices and offer video rates as well. A SiOx‐layer‐based liquid‐crystal (LC) alignment technique is studied here to overcome the ion problems typically encountered with low‐refresh‐rate devices. The effect of ions on the voltage‐holding ratio (VHR) and residual DC voltage (RDC) with SiOx‐based LC alignment is compared with those for polyimide‐based LC alignment. It is found that only SiOx alignment provides high VHR and small RDC, with good stability over time. Therefore, it is shown that SiOx alignment is an excellent candidate for low‐power AMLCDs operated with an ultra‐wide refresh‐rate range.  相似文献   

14.
Abstract— This work demonstrates polarization‐independent and electrically tunable liquid‐crystal (LC) Fresnel lenses based on photoalignment in dye‐doped liquid crystals (DDLCs). The LC alignments in the adjacent odd and even zones of the LC Fresnel lens are orthogonally hybrid alignments. Those are generated by surface treatment of homeotropic and homogeneous alignment layers, and the dye‐adsorption layer onto the UV‐cured surface‐relief Fresnel zone plate. The maximum focusing efficiency (~34.14%) of the fabricated LC Fresnel lens by applying a suitable AC voltage is close to the maximal theoretical focusing efficiency of a binary phase LC Fresnel lens (~40.5%). Additionally, the focusing efficiency is polarization‐independent and electrically tunable.  相似文献   

15.
Abstract— A fringe‐field‐switching (FFS) mode cell having LC alignment has been developed by using a non‐rubbing method, a ion‐beam‐alignment method on a‐C:H thin film, to analyze the electro‐optical characteristics of this cell. The suitable inorganic thin film for FFS‐LCDs and the alignment capabilities of nematic liquid crystal (NLC) have been studied. An excellent voltage‐transmittance (V‐T) and response‐time curve for the ion‐beam‐aligned FFS‐LCDs were observed using oblique ion‐beam exposure on DLC thin films.  相似文献   

16.
We have developed a new microstructure film for wide viewing liquid crystal displays (LCDs). By attaching it to the surface of a conventional LCD, the viewing angle characteristics of LCD has drastically improved without causing a blur of the frontal image and a decrease in the contrast ratio under bright ambient light conditions. This film can be applied to various LC modes including twisted nematic and multidomain vertical alignment by changing its internal micrometer‐size 3D structure. Further, this film can be mass‐produced efficiently by self alignment roll‐to‐roll process.  相似文献   

17.
Abstract— We have developed a novel method of aligning liquid‐crystal (LC) molecules that employs a layer patterned with hydrophilic and hydrophobic regions fabricated by the photocatalysis of TiO2. This method provides a resolution on the order of 10μm for the alignment of LC molecules without the need for protrusions or patterned electrodes. Using this method, we achieved the continuous multidomain vertical alignment of LC molecules.  相似文献   

18.
Nowadays, liquid crystal displays (LCDs) with light‐emission are considered as energy‐efficient devices and are promising alternatives to conventional LCDs. To realize such possibility, strong fluorescent materials with a dichroic properties are required. Aggregate‐induced emission (AIE) is an unusual photophysical phenomenon shown by some luminogenic materials that will be highly emissive in their aggregate state. In this work, we studied the AIE effect of a luminescent liquid crystalline molecule TPE‐PPE in our LC system as a luminophore dopant. The result showed the excellent AIE effect that higher concentration of luminogen in the nematic LC host induced stronger luminescent intensity. Through exposure of a photoisomeriable alignment material sulfonic‐dye‐1, the photopatterning of a light‐emitting LC device was achieved with the use of the TPE‐PPE/nematic LC mixture.  相似文献   

19.
Abstract— Liquid‐crystal (LC) photoalignment using azo dyes is described. It will be shown that this photoaligning method can provide a highly uniform alignment with a controllable pretilt angle and strong anchoring energy of the LC cell, as well as a high thermal and UV stability. The application of LC photoalignment to the fabrication of various types of liquid‐crystal displays, such as VAN‐LCDs, FLCDs, TN‐LCDs, and microdisplays, on glass and plastic substrates is also discussed. Azo‐dye photoaligned super‐thin polarizers and phase retarders are considered as new optical elements in LCD production, in particular for transflective displays.  相似文献   

20.
Abstract— A novel liquid‐crystal alignment method, diamond‐like carbon and ion beam alignment (DLC/IB) technology, was announced at the 2001 SID Symposium. And since December 2001, a new‐generation ion‐beam machine has been placed into the manufacturing line of IDTech. DLC/IB technology is mainly used for medical displays, which require a monochrome high‐density and super‐uniform display. We report on the latest developments of these advanced monochrome displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号