首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— In this paper, the design criteria for scaling up from small‐area organic light‐emitting‐diode (OLED) pixels to large‐area OLED light panels is described. Particular focus is placed on using phosphorescent OLEDs (PHOLEDs) to maximize panel efficacy and uniformity and minimize operating temperature. Data for a pair of all‐phosphorescent 15 × 15 cm OLED light panels are also presented: Panel 1 has 62‐lm/W efficacy, CRI = 81, CCT = 3180K, and lifetime to LT70 = 18,000 hours at 1000 cd/m2 and Panel 2 has 58‐lm/W efficacy, CRI = 82, CCT = 2640K, and lifetime to LT70 = 30,000 hours at 1000 cd/m2. Operating at a 3000 cd/m2 (7740 lm/m2), Panel 2 has 49‐lm/W efficacy with lifetime to LT70 = 4000 hours. Excellent panel lifetime is enabled by a stable light‐blue phosphorescent materials system and by the use of efficient phosphorescent emitters that ensure very low panel temperature without any additional thermal management.  相似文献   

2.
Abstract— Highly efficient tandem white OLEDs based on fluorescent materials were developed for display and solid‐state‐lighting (SSL) applications. In both cases, the white OLED must have high power efficiency and long lifetime, but there are a number of attributes unique to each application that also must be considered. Tandem OLED technology has been demonstrated as an effective approach to increase luminance, extend OLED lifetime, and allow for use of different emitters in the individual stacks for tuning the emission spectrum to achieve desired performance. Here, examples of bottom‐emission tandem white OLEDs based on small‐molecule fluorescent emitters designed for displays and for SSL applications are reported. A two‐stack tandem white OLED designed for display applications achieved 36.5‐cd/A luminance efficiency, 8500K color temperature, and lifetime estimated to exceed 50,000 hours at 1000 cd/m2. This performance is expected to meet the specifications for large AMOLED displays. A two‐stack tandem white OLED designed for SSL applications achieved 20‐lm/W power efficiency, 38‐cd/A luminance efficiency, 3500K color temperature, and lifetime estimated to exceed 140,000 hours at 1000 cd/m2. With the use of proven light‐extraction techniques, it is estimated that this tandem device will exceed 40 lm/W with more than 500,000‐hour lifetime, performance that should be sufficient for first‐generation lighting products.  相似文献   

3.
Abstract— A white OLED device with extremely high power efficiency and long lifetime was developed, in which blue, yellow‐green, and red phosphorescent emitters were used. The performances achieved were 64 lm/W and 10,000 hours of lifetime at an initial luminance of 1000 cd/m2 by using a light outcoupling technique. The device also exhibited the good durability important for practical usage. New technologies, such as blue phosphorescent materials and a sophisticated organic layer structure, were applied to the device. Hopefully, these technologies will open the door to the practical use of OLEDs as light sources.  相似文献   

4.
High‐performance two‐unit all‐phosphorescent white devices on a built‐up light extraction substrate that comprised high‐index materials were studied. As a result of suitable optical and electrical design, the device showed an extremely high efficacy of 114 lm/W at 1000 cd/m2. The device also showed 102 lm/W with long lifetime (LT70) of over 10,000 h at 3000 cd/m2. Outstanding external quantum efficiency of almost 50% was also achieved in a flat panel with an emissive area of 25 cm2. Color coordinates of the panel met the Energy Star ® criteria of solid‐state lighting with CIE (Commission Internationale de l'Éclairage) 1931 (x, y) = (0.477, 0.423), and the color rendering index was 81.  相似文献   

5.
Abstract— The three critical parameters in determining the commercial success of organic light‐emitting diodes (OLEDs), both in display and lighting applications, are power efficiency, lifetime, and price competitiveness. PIN technology is widely considered as the preferred way to maximize power efficiency and lifetime. Here, a high‐efficiency and long‐lifetime white‐light‐emitting diode, which has been realized by stacking a blue‐fluorescent emission unit together with green‐ and red‐phosphorescent emission units, is reported. Proprietary materials have been used in transport layers of each emission unit, which significantly improves the power efficiency and stability. The power efficiency at 1000 cd/m2 is 38 lm/W with CIE color coordinates of (0.43, 0.44) and a color‐rendering index (CRI) of 90. An extrapolated lifetime at an initial luminance of 1000 cd/m2 is above 100,000 hours, which fulfils the specifications for most applications. The emission color can also be easily tuned towards the equal‐energy white for display applications by selecting emitting materials and varying the transport‐layer cavities.  相似文献   

6.
Abstract— A new approach to full‐color printable phosphorescent organic light‐emitting devices (P2OLEDs) is reported. Unlike conventional solution‐processed OLEDs that contain conjugated polymers in the emissive layer, the P2OLED's emissive layer consists of small‐molecule materials. A red P2OLED that exhibits a luminous efficiency of 11.6 cd/A and a projected lifetime of 100,000 hours from an initial luminance of 500 cd/m2, a green P2OLED with a luminous efficiency of 34 cd/A and a projected lifetime of 63,000 hours from an initial luminance of 1000 cd/m2, a light‐blue P2OLED with a luminous efficiency of 19 cd/A and a projected lifetime 6000 hours from an initial luminance of 500 cd/m2, and a blue P2OLED with a luminous efficiency of 6.2 cd/A and a projected lifetime of 1000 hours from an initial luminance of 500 cd/m2 is presented.  相似文献   

7.
Abstract— We have used bis(8‐quinolinolato)phenolato‐aluminum complexes as emission‐layer hosts in red‐phosphorescent OLED devices. This enabled high‐efficiency long‐lived OLED devices with a simple device structure that does not require a hole‐blocking layer. Devices with a red‐phosphorescent dopant introduced into a noble bis(8‐quinolinolato)phenolato‐aluminum complex exhibited a high efficiency of 12 cd/A at CIE color coordinates (0.65, 035) and a long operating lifetime of 30,000 hours or more at an initial luminance of 700 cd/m2. Moreover, triplet‐triplet annihilation was reduced in the devices because of the wide emission zone enabled by the complex and the short phosphorescent lifetime of the red‐phosphorescent dopant. We have successfully incorporated these red‐phosphorescent devices into commercial OLED displays.  相似文献   

8.
Abstract— A novel method for the fabrication of ink‐jet‐printed organic light‐emitting‐diode devices is discussed. Unlike previously reported solution‐processed OLED devices, the emissive layer of OLED devices reported here does not contain polymeric materials. The emission of the ink‐jet‐printed P2OLED (IJ‐P2OLED) device is demonstrated for the first time. It shows good color and uniform emission although it uses small‐molecule solution. Ink‐jet‐printed green P2OLED devices possess a high luminous efficiency of 22 cd/A at 2000 cd/m2 and is based on phosphorescent emission. The latest solution‐processed phosphorescent OLED performance by spin‐coating is disclosed. The red P2OLED exhibits a projected LT50 of >53,000 hours with a luminous efficiency of 9 cd/A at 500 cd/m2. The green P2OLED shows a projected LT50 of >52,000 hours with a luminous efficiency of 35 cd/A at 1000 cd/m2. Also discussed is a newly developed sky‐blue P2OLED with a projected LT50 of >3000 hour and a luminous efficiency of 18 cd/A at 500 cd/m2.  相似文献   

9.
Abstract— Currently, three issues are identified that decide upon the commercial success of organic light‐emitting diodes (OLEDs), both in display and lighting applications: power efficiency, lifetime, and price competitiveness. PIN OLEDs are widely seen as the preferred way to maximize power efficiency. Here, it is reported that this concept also delivers the world longest lifetimes. For a highly efficient deep‐red PIN OLED, a half‐lifetime of 25,000 hours for a starting brightness of 10,000 cd/m2 and a minimal voltage increase over lifetime is reported. This value corresponds to more than 1 × 106 hours at 1000 cd/m2 using an exponent of n = 1.7, which was measured by driving the OLEDs at different starting luminances. Because there is no initial luminance drop, these PIN OLEDs also exhibit a very high 80% lifetime (>300,000 hours at 1000 cd/m2). New record lifetime values for blue and green will be reported as well. Additionally, further topics that have impact on the production yield and cost such as the newly developed air‐stable organic n‐doping material NDN‐26 and top‐emitting structures will be discussed.  相似文献   

10.
Abstract— The development of a high‐brightness low‐voltage yellow‐light‐emitting polymer system suitable for use in low‐cost passive‐matrix displays will be reported. Average device efficiencies of 16 lm/W at 100 and 1000 cd/m2 are achieved at 2.1 and 2.4 V, respectively. A luminance level of 100,000 cd/m2 is achieved at 5.5 V.  相似文献   

11.
Abstract— The fabrication technique for color OLED panels by means of wettability‐controllable hole‐injection material (HIM) and a photocatalytic lithography method achieves both precise ink‐jet printing and long‐lifetime devices. The technique enables us to selectively change the non‐wetting surface of a hole‐injection layer (HIL) of metal‐oxide nanoparticles (MONPs) into a wetting surface without damage to the device performance. Wetting patterns formed by this method with photocatalyst‐coated photomasks made it possible to print emission material with patterns of precisely 98‐μm widths on the hole‐injection layer. A fluorescent green‐emitting device fabricated with an HIM of MONPs by the photocatalytic treatment exhibited a long lifetime of 365 hours at30,000 cd/m2, which can be extrapolated to a lifetime of more than 110,000 hours at 1000 cd/m2, assuming an acceleration coefficient of 1.7. A two‐color device and a monochrome passive‐matrix panel were also successfully fabricated. The two‐color device emitted light without the mixing of colors. The monochrome panel displayed alphabetical characters with good uniformity and no flaws.  相似文献   

12.
The performance of two 4‐in. color PDP test panels with a default and a high‐Xe‐concentration gas mixture will be discussed. The default panel with a gas mixture of 3.5% Xe in Ne and a filling pressure of 665 hPa was compared with a panel containing a gas mixture of 13.5% Xe in Ne and a filling pressure of 800 hPa. The panels contain a green phosphor, YBO3:Tb, which showed less saturation at high UV load compared with a Willemite phosphor. The panel performance was compared in addressed conditions. For the default panel, a white luminance of 710 cd/m2 and an efficacy of 1.6 lm/W was found, while for the high‐Xe‐partial‐pressure panel, a white luminance of 2010 cd/m2 and an efficacy of 3.8 lm/W was realized. The increase of the driving voltages, about 20–30 V, is moderate. Finally, color saturation is improved at high Xe partial pressure.  相似文献   

13.
We investigated highly efficient organic light emitting diode (OLED) with advanced optical designs of organic layers to convert evanescent mode (internal absorption) into guided light and micro structure to extract the specifically distributed guided light dominated by wide angular substrate mode. White OLED device based on these optical designs realized high efficacy of 133 lm/W and external quantum efficiency of 56 % at 1000 cd/m2.  相似文献   

14.
A high‐efficiency organic light‐emitting diode (OLED) microdisplay has been developed with some new technologies including microlens array. We focused on the improvement of the out‐coupling efficiency and achieved three times higher efficiency as compared with conventional OLED. By using our developed technologies, it is possible to improve the maximum luminance from 1600 to 5000 cd/m2 while maintaining same lifetime.  相似文献   

15.
To improve PDP performance, we developed an AC‐PDP with the Delta Tri‐Color Arrangement (DelTA) cell structure and arc‐shaped electrodes. The experimental panel has a pixel pitch of 1.08 mm and luminous efficacy of 3 lm/W at a luminance of 200 cd/m2 despite its conventional gas mixture of Ne and Xe (4%) and conventional phosphor set. Moreover, its peak luminance can be greater than 1000 cd/m2. The strong dependence of luminous efficacy on the sustain voltage is also discussed in this paper.  相似文献   

16.
Abstract— Two pico‐projection systems, a monochrome green and a full‐color system, based on high‐efficiency OLED microdisplays (VGA; pixel size, 12 μm) are presented. Both optical systems are described by a numerical aperture of about 0.3, a magnification of 15x, and a working distance of 300–360 mm. The frequency limit of both systems is 42 cycles/mm at an image contrast of about 60%. The monochrome projection system with a volume smaller than 10 cm3 consists of one green OLED and a projection lens with five elements. The measured luminance in the image plane is about 0.061 lm. The image has a diagonal of 150 mm with a working distance of about 300 mm and has a considerable image contrast of 396:1. The second system combines three high‐brightness OLEDs, red, green, and blue colored, together with a projection lens and an image‐combining element, and an X‐Cube to achieve full‐color projection. The estimated luminance value for the three‐panel projection unit with an OLED luminance of 10,000 cd/m2 for each display will be about Φcalculated = 0.147 lm. In this paper, the system concepts, the optical designs, and the realized prototypes of the monochrome and full‐color projection system are presented.  相似文献   

17.
Abstract— The trade‐off between PDP efficacy improvement and driving voltages was investigated for several design factors. It was found that for a proper combination of an increased Xe content, cell design, and the use of a TiO2 layer combined with “non‐saturating” phosphors, a large increase in both efficacy and luminance can be realized at moderately increased drive voltages. In a 4‐in. color test panel, a white efficacy of 5 lm/W and a luminance of 5000 cd/m2 was obtained for sustaining at 260 V in addressed condition.  相似文献   

18.
Abstract— We have developed a high‐performance 55‐in. diagonal WXGA PDP module with a novel structure by using Extended ALIS (Alternate Lighting of Surfaces) technology. The new cell structure that uses the common bus electrode concept was invented with a new driving scheme aimed toward progressive lighting. A new method of reducing dynamic false contour (DFC), motion adaptive subfield coding, was also developed. The newly developed 55‐in. WXGA panel has a 1000‐cd/m2 peak luminance and a 160‐cd/m2 full‐screen white luminance with a 9000 K color temperature at a 350‐W display power consumption.  相似文献   

19.
Abstract— Solution‐processed double‐layered ionic p‐i‐n organic light‐emitting diodes (OLEDs), comprised of an emitting material layer doped with an organometallic green phosphor and a photo‐cross‐linked hole‐transporting layer doped with photo‐initiator is reported. The fabricated OLEDs were annealed using simultaneous thermal and electrical treatments to form a double‐layered ionic p‐i‐n structure. As a result, an annealed double‐layered OLED with a peak brightness over 20,000 cd/m2 (20 V, 390 mA/cm2) and a peak efficiency of 15 cd/A (6 V, 210 cd/m2) was achieved.  相似文献   

20.
To come out with a successful organic light‐emitting diode (OLED) lighting business, it is very important to have clear differentiation of OLED from LEDs. Flexible OLED has merits, such as capability to be mounted on the curved wall, which is not easy for LEDs to achieve the feature. There are several approaches to make flexible OLEDs especially among those plastic barrier films that can bring high level of flexibility, which could not be achieved by any conventional lighting method. In this paper, barrier films with various water vapor transmission rate values, including 10? 6 order, are applied, and the conditions to have almost no dark spot growth under 85 °C and 85% high temperature/humidity test are shown. Flexible OLED panels are manufactured with the world's first roll‐to‐roll equipment using plastic barrier film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号