首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the performance of the continuous phase modulation (CPM)‐based orthogonal frequency division multiplexing (CPM‐OFDM) system. Also, we propose a CPM‐based single‐carrier frequency domain equalization (CPM‐SC‐FDE) structure for broadband wireless communication systems. The proposed structure combines the advantages of the low complexity of SC‐FDE, in addition to exploiting the channel frequency diversity and the power efficiency of CPM. Both the CPM‐OFDM system and the proposed system are implemented with FDE to avoid the complexity of the equalization. Two types of frequency domain equalizers are considered and compared for performance evaluation of both systems; the zero forcing (ZF) equalizer and the minimum mean square error (MMSE) equalizer. Simulation experiments are performed for a variety of multipath fading channels. Simulation results show that the performance of the CPM‐based systems with multipath fading is better than their performance with single path fading. The performance over a multipath channel is at least 5 and 12 dB better than the performance over a single path channel, for the CPM‐OFDM system and the proposed CPM‐SC‐FDE system, respectively. The results also show that, when CPM is utilized in SC‐FDE systems, they can outperform CPM‐OFDM systems by about 5 dB. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A highly efficient multi‐access scheme of broadband power line (BPL) communication, named as OFDM‐BPS‐OPDMA, is proposed based on the Orthogonal Pulse Division Multiplexing Access (OPDMA), Barker‐code‐based Spectrum Spreading (BSS) and Orthogonal Frequency Division Multiplexing (OFDM) method. The orthogonal pulses are generated by using the eigenvectors of Hermitian matrix. At the same time, a specific pulse will be allocated to every user of the communication system. The transmitting data are first modulated by OFDM. Then, it is processed with OPDMA and BSS. Finally, the data is sent to the power line channel. On the receiving side, the data is processed with BSS demodulation, OPDMA demodulation and OFDM demodulation, and the receiving data for each user is acquired. Because of the orthogonality between these pulses, the multi‐user interference could be eliminated; when BSS is used, the waveform restoration is enhanced. Meanwhile, with the help of OFDM, the multi‐path interference is mitigated. Particularly, all users can share the resources of time and spectrum without interfering with others, and get excellent reliability in the concerned scheme. When OFDM is used, the sub‐carriers may be allocated dynamically, and the legal radio frequency band could be shunned by sharing the common bandwidth with other communication systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A method for broadcasting digital audio simultaneously with existing analog frequency modulation (FM) radio is presented. The method is based on precomputing the response of the host analog FM signal at the digital receiver and precanceling it at the transmitter. As a result, the digital transmission is free from interference from analog FM. We select the rate and power level of the digital transmission in a manner that the interference the digital data incur on the analog FM signal remains at acceptably low levels. The digital transmission is based on adaptive orthogonal frequency-division multiplexing (OFDM) (adaptive multicarrier). The frequencies and number of carriers of the digital multicarrier modem are judiciously selected in a time-varying fashion so as to cause a negligible distortion in a standard receiver for analog FM. Simulations based on conservative nonoptimized signal design indicate that data rates up to about 130 kb/s inside the 200-kHz FM channel are achievable for acoustic test signals. We present a number of numerical examples where the average digital data use up to 50% of the 200-kHz power spectrum with digital signal power levels 25-35 dB below the analog signal. Due to the resulting variable-rate digital transmission, a control channel is required. A method of precanceling with multiple orthogonal direct-sequence spread-spectrum schemes is also presented  相似文献   

4.
The surest way to guarantee that multiple wireless systems can concurrently exist harmlessly, when operating in the same or adjacent channel, is by analyzing spectrum overlapping. This paper proposes a more accurate model to evaluate the interference power from co-channel and adjacent channel of orthogonal frequency division multiplexing-based long term evolution-advanced (LTE-Advanced) towards broadcasting frequency modulation systems at 800?MHz. Power spectral density overlapping factor is employed, and closed form of the interference power loss is derived. Numerical results demonstrate that the proposed method evaluates more exact interference power than the advanced minimum coupling loss (A-MCL) method, where the co-channel and adjacent channel interference powers are reduced by 1.3 and 3?dB, correspondingly, compared to that obtained using the A-MCL method. This decreases the minimum separation distance between the two systems, which can eventually lead to efficient radio spectrum resources utilization.  相似文献   

5.
This paper proposes a subcarrier weighting technique to suppress the out‐of‐band radiation of OFDM signals. By mapping and weighting the same data on an adjacent pair of subcarriers, the spectrum sidelobes are suppressed perfectly through sidelobes mutual cancellation. The optimum weighting factor is derived based on a rectangular pulse‐shaped OFDM spectrum model. Compared with existing out‐of‐band suppression schemes, the proposed scheme not only requires less computational burden but also achieves better spectral roll‐off. For example, when the cyclic prefix of a one‐eighth OFDM‐block length is added, the proposed scheme suppresses the 10‐dB radiation at the center frequency between two subbands which are using cognitive radio. Analytical and simulation results also show that the proposed scheme improves the system carrier‐to‐interference ratio by 10 dB at a normalized frequency offset above 0.1, which leads to the performance improvement in terms of the BER on AWGN channel and multipath fading channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we first analyze carrier‐to‐interference ratio performance of the space–frequency block coded orthogonal frequency‐division multiplexing (SFBC‐OFDM) system in the presence of phase noise (PHN) and residual carrier frequency offset (RCFO). From the analysis, we observe that conventional SFBC‐OFDM systems suffer severely in the presence of PHN and RCFO. Therefore, we propose a new inter‐carrier interference (ICI) self‐cancellation method — namely, ISC — for SFBC‐OFDM systems to reduce the ICI caused by PHN and RCFO. Through the simulation results, we show that the proposed scheme compensates the ICI caused by PHN and RCFO in Alamouti SFBC‐OFDM systems and has a better performance than conventional schemes.  相似文献   

7.
In this paper, we analyze the algorithm of the methodology developed by ITU for the calculation of spectrum requirements of IMT‐Advanced. We propose an approach to estimate user density using traffic statistics, and to estimate spectrum efficiencies using carrier‐to‐interference ratio distribution and capacity theory as well as experimental data under Korean mobile communication environments. We calculate the IMT‐Advanced spectrum requirements based on the user density and spectral efficiencies acquired from the new method. In the case of spectral efficiency using higher modulation and coding schemes, the spectrum requirement of IMT‐Advanced is approximately 2700 MHz. When applying a 2×2 multiple‐input multiple‐output (MIMO) antenna system, it is approximately 1500 MHz; when applying a 4×4 MIMO antenna system, it is approximately 1050 MHz. Considering that the development of new technology will increase spectrum efficiency in the future, the spectrum requirement of IMT‐Advanced in the Korean mobile communication environment is expected to be approximately 1 GHz bandwidth.  相似文献   

8.
王贝贝  王飞 《电声技术》2012,36(5):82-84
OFDM与FM带内数模混叠同播是中国发展数字调频的一项重要候选技术,评估OFDM对FM解调的影响是选择OFDM与发射功率比的重要参考依据.在给出了三种常见调频解调算法公式的基础上,通过仿真评估了OFDM对FM解调失真度和信噪比的影响.仿真结果表明,在OFDM与FM发射功率比高于-11 dB时发生明显的捕获效应.  相似文献   

9.
Orthogonal frequency‐division multiplexing (OFDM) suffers from spectral nulls of frequency‐selective fading channels. Linear precoded (LP‐) OFDM is an effective method that guarantees symbol detectability by spreading the frequency‐domain symbols over the whole spectrum. This paper proposes a computationally efficient and low‐cost implementation for discrete Hartley transform (DHT) precoded OFDM systems. Compared to conventional DHT‐OFDM systems, at the transmitter, both the DHT and the inverse discrete Fourier transform are replaced by a one‐level butterfly structure that involves only one addition per symbol to generate the time‐domain DHT‐OFDM signal. At the receiver, only the DHT is required to recover the distorted signal with a single‐tap equalizer in contrast to both the DHT and the DFT in the conventional DHT‐OFDM. Theoretical analysis of DHT‐OFDM with linear equalizers is presented and confirmed by numerical simulation. It is shown that the proposed DHT‐OFDM system achieves similar performance when compared to other LP‐OFDMs but exhibits a lower implementation complexity and peak‐to‐average power ratio.  相似文献   

10.
OFDM‐based cognitive radio systems are spectrally flexible and efficient, but they are vulnerable to intercarrier interference (ICI), especially in high mobility environments. High mobility of the terminal causes large Doppler frequency spread resulting in serious ICI. Such ICI severely degrades the system performance, which is ignored in the existing resource allocation of OFDM‐based cognitive radio systems. In this paper, an adaptive subcarrier bandwidth along with power allocation problem in OFDM‐based cognitive radio systems for high mobility applications is investigated. This adaptive subcarrier bandwidth method should choose the suitable subcarrier bandwidth not only to balance the tradeoff between ICI and intersymbol interference but also to be large enough to tolerate an amount of Doppler frequency spread but less than the coherence bandwidth. The power budget and interference to primary users caused by cognitive radio users are imposed for primary users' protection. With these constraints, a joint optimization algorithm of subcarrier bandwidth and power allocation is proposed to maximize the bandwidth efficiency of OFDM‐based cognitive radio systems in such conditions. Numerical simulation results show that the proposed algorithm could maximize the system bandwidth efficiency and balance this tradeoff while satisfying the constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The tone reservation method is one of the most effective pre‐distortion methods for peak‐to‐average power ratio reduction in orthogonal frequency division multiplexing (OFDM) systems. Its direct application to OFDM systems with offset quadrature amplitude modulation (OQAM) is, however, not effective. In this paper, two novel TR‐based methods are proposed, specifically designed for OFDM/OQAM systems by taking into consideration the overlapping nature of OQAM signals. These two methods have different approaches to the generation of the peak‐cancelling signal. The first one (overlapped scaling tone reservation) generates the peak‐cancelling signal using a least squares approximation algorithm with possible adjacent symbol overlap; the second one (multi‐kernel tone reservation) generates the peak‐cancelling signal by using multiple impulse‐like time domain kernels. It is shown by simulation that, when used in OFDM/OQAM systems, the proposed methods can provide better performance than the direct application of the existing controlled clipping tone reservation method, and even outperform the multi‐block tone reservation method.  相似文献   

12.
The necessity to share the radio spectrum becomes highly significant in the recent time due to emerging new wireless technologies and, the cost and difficulty in attaining new frequency spectrum licenses. However, spectrum sharing leads to substantial interference between the close systems especially in the same frequency band. In this paper, we present a spectrum sharing scheme to investigate coexistence feasibility results in interference from orthogonal frequency division multiplexing (OFDM)-based Long Term Evolution-Advanced (LTE-A) into point to multipoint (P-MP) local multipoint distribution service (LMDS). This method proposes a spectrum frequency mask for the OFDM-based LTE-A according to bandwidth overlapping method with the P-MP LMDS system. The relative power spectral density of the proposed spectrum emission mask due to bandwidth overlap has been mathematically derived in a more compact closed-form. It shows smoother and 1.7 dB less than that of traditional OFDM mask in the main spectrum bandwidth which in turn leads to reduce the interference effects to LMDS system. The coexistence coordination studies are made at the frequency of 3500 MHz, on the base of co-primary operation and co-located systems. The numerical results demonstrate that the difference in amount of the required carrier frequency for safe coexistence increases as LMDS sector size increases. In addition, OFDM system with small channel bandwidth is much more affected than the wider channel bandwidth in terms of the necessary minimum guard bandwidth for harmless coexistence when the LMDS cell size changes from 0.5 to 3 km2.  相似文献   

13.
Offset quadrature amplitude modulation‐based orthogonal frequency division multiplexing (OFDM) systems cannot be directly combined with the Alamouti code because of the intrinsic imaginary interference. In this paper, we propose a block‐wise space‐frequency block coding (SFBC) scheme and a block‐wise space‐time block coding (STBC) scheme for offset quadrature amplitude modulation‐based OFDM systems, which achieve bit error rate performances that are close to OFDM systems. The proposed schemes satisfy the orthogonality condition of the Alamouti code in the complex field with guard band/intervals. To improve the spectral efficiency of the block‐wise SFBC scheme, we also consider the case without the guard band. It is observed that only the two innermost subcarriers do not satisfy the complex orthogonality condition when the guard band is removed. Then, a simple equalization scheme is proposed to independently equalize the two innermost subcarriers. Simulation results show that the block‐wise SFBC scheme works well under channels with mild‐to‐moderate frequency selectivity, and the block‐wise (STBC ) scheme suffers less than 1 dB loss under severe frequency selective channels at the bit error rate of 10 − 3, when only a simple one tap zero‐forcing equalizer is employed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Differential unitary space‐time modulation (DUSTM) has emerged as a promising technique to obtain spatial diversity without intractable channel estimation. This paper presents a study of the application of DUSTM on multiple‐input multiple‐output orthogonal frequency division multiplexing (MIMO‐OFDM) systems with frequency‐selective fading channels. From the view of a correlation analysis between subcarriers of OFDM, we obtain the maximum achievable diversity of DUSTM on MIMO‐OFDM systems. Moreover, an efficient implementation strategy based on subcarrier reconstruction is proposed, which transmits all the signals of one signal matrix in one OFDM transmission and performs differential processing between two adjacent OFDM blocks. The proposed method is capable of obtaining both spatial and multipath diversity while reducing the effect of time variation of channels to a minimum. The performance improvement is confirmed by simulation results.  相似文献   

15.
Orthogonal frequency‐division multiplexing (OFDM) is one of the most widely used technologies in current wireless communication systems and standards. Cognitive radio (CR) provides a robust solution to the problem of spectrum congestion as it offers opportunistic usage of frequency bands that are not occupied by primary users. Due to the underlying sensing, spectrum shaping, scaling, and interoperable capabilities of OFDM, it has been adapted as a best transmission technology for CR wireless systems. However, the performance of an OFDM‐based CR wireless system is affected by the existence of narrowband interference (NBI) from other users. Further, due to carrier frequency offset in NBI sources, NBI energy may spread over all subcarriers of an OFDM signal. In this paper, a fixed Amplify‐and‐Forward (AF) relay that operates at a frequency band that is different from that of direct mode is introduced to suppress the effect of NBI. Analytical expressions are derived for outage probability in direct, AF‐relay, and incremental relaying modes. The outage performance of the proposed AF relay–based CR network is proven to be better than that of direct mode.  相似文献   

16.
In recent years, power lines have gained significant interest for their use in high‐speed communications because of the already deployed power distribution infrastructure. However, to achieve high data rates with reliability in power line communication (PLC), robust signal processing techniques are required to mitigate channel distortion and noise. Orthogonal frequency division multiplexing (OFDM) as a multicarrier modulation technique has been standardized for PLC; however, to further enhance the quality of communication, wavelet OFDM (WOFDM) has been proposed as a suitable choice. In this article, OFDM‐based and WOFDM‐based PLC systems are studied, and overlap frequency domain equalization (OFDE) as a robust and efficient equalization technique is presented. Moreover, to enhance the efficiency of the OFDE, linear precoding (LP) is also suggested for fast Fourier transform and wavelet transform–based filter bank transceivers over the PLC channel. Performance of the proposed LP‐based OFDM‐OFDE and LP‐based WOFDM‐OFDE systems is compared with previously proposed equalization structures in terms of bit error rate, peak‐to‐average power ratio, and computational complexity via computer simulations. Furthermore, the performance of proposed architectures is also compared with classical equalization techniques under impulse noise with different intensities. Results show that not only the proposed LP‐based WOFDM‐OFDE transceiver performs better than the previous equalization models but also the LP‐based OFDM‐OFDE at the expense of slight increment in computational complexity.  相似文献   

17.
In this paper, we consider the narrowband interference problem for orthogonal frequency division multiplexing (OFDM)‐based cognitive radio (CR) systems, in which parts of the OFDM subcarriers and parts of the data frame can be seriously interfered, resulting in significant performance degradation. We propose a scheme of iterative noise plus interference estimation and decoding (IED) to mitigate the performance degradation caused by the narrowband interference, which is based on expectation maximization (EM) algorithm. To reduce the number of OFDM symbols for time domain averaging required in the proposed scheme, and adapt the proposed scheme to rapid changing narrowband interference conditions, we also propose an IED scheme with frequency domain partial averaging (IED‐FPA). Moreover, we derive the Cramér‐Rao lower bounds for unbiased noise plus interference variance estimations, and they can be achieved via the proposed IED schemes. Simulation results show that the proposed IED‐FPA scheme can effectively achieve the same performance as that of the optimal maximum likelihood decoder with full knowledge of the power plus interference variances, and the proposed IED‐FPA scheme is very robust with respect to the number of the interfered subcarriers and positive errors of the knowledge of the interfered subcarriers' number. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Cognitive radio (CR) has been proposed as an effective technology for flexible use of the radio spectrum. The interference between primary users and CR users, however, becomes a critical problem when they are using adjacent frequency channels with different transmission power levels. In this paper, a robust CR orthogonal frequency division multiplexing (OFDM) architecture, which can effectively suppress interference to nearby primary users and overcome adjacent channel interference (ACI) to the CR user, is proposed. This new approach is characterized by adaptive data repetition for subcarriers under heavy ACI, and adaptive time spreading for subcarriers near the borders of the CR user's spectrum. The data repetition scheme provides extra power gain against the ACI coming from primary users. Time spreading guarantees an acceptable interference level to nearby primary users. By computer simulation, we demonstrate that, under a CR environment, the proposed CR OFDM architecture outperforms conventional OFDM systems in terms of throughput and BER performance.  相似文献   

19.
The high peak‐to‐average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems not only increases the complexity of the analog‐to‐digital (A/D) and digital‐to‐analog (D/A) converters but also reduces the efficiency of the radio frequency (RF) power amplifier. In this paper, we present a data position permutation (DPP) method, which is based on a selected mapping (SLM) scheme, for reducing the PAPR in OFDM systems. The candidate signal on each branch of the SLM scheme is generated by permuting the position and rotating the phase of the original data. In addition, a modified DPP method with lower bit error rate (BER) is proposed. The simulation results show that the proposed method provides better performance with regard to complexity, spectrum efficiency, and BER as compared to that of the SLM‐based dummy sequence insertion (SLM‐DSI) method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
针对认知正交频分复用(OFDM)系统带外辐射(OBR)严重问题,在研究基于功率谱密度的主动干扰消除算法(PSD-AIC)模型的基础上,提出了动态PSD-AIC的方法,通过对每一子载波位置OBR的计算,比较选择出OBR取值最小处,作为对消子载波的最优位置,显著改善了系统对OBR的抑制性能(增大约10 dB).对比分析了算法的计算开销,研究了设计参数对OBR的影响,提出了实际应用时的参数选择基准.仿真结果和理论分析表明,动态PSD-AIC方法可以显著减小带外干扰.与PSD-AIC方法相比,旁瓣抑制深度可增加约10 dB;与传统AIC方法相比,只需相似计算量,干扰抑制性能便可明显增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号