共查询到20条相似文献,搜索用时 0 毫秒
1.
热解炭原位重整城市固体废物的挥发分是改善热解产物的良好方法。在这个过程中,水蒸气在产品转化中起着重要作用。为了了解水分在重整过程中的作用,本研究中将热解液中的油相和水相分离,然后用D2O代替重整过程中的水相,以跟踪液体、气体和固体之间的氢转移。热解油/焦炭重整过程在600、700和800℃下进行。用GC-MS(气相色谱质谱法)分析重整后液体中的油相;IR-MS(同位素比质谱法)分析重整后液体和固体中的氘浓度。研究发现,在实验温度范围内,水蒸气对焦炭的气化作用非常弱,当D2O/焦炭的比例为2/1时,D2O中2%(质量)的氘在反应后残留在炭中;但水蒸气与热解油的气化反应很强烈,在800℃时,78.68%(质量)的热解液(水油混合物)被气化,且热解油中脂肪烃被大量分解,重整液的油相组分中芳香烃占到96.17%;同时,当D2O/油的比例为2/3时,D2O中59%的氘转移到合成气中。研究结果将为生活垃圾热解处理控制最终产物提供理论指导。 相似文献
2.
以煤油共炼残渣与榆林煤为原料,基于热重分析仪和格金干馏仪,开展共炼残渣与煤共热解过程的协同效应及半焦性质研究。实验结果表明:共炼残渣添加比例为0~40%时,煤与共炼残渣之间具有正的协同效应;添加量为20%时,焦油产率高出理论值6.2%,是煤单独热解焦油产率的139.7%,半焦产物为A型且黏结性增加;半焦性质分析结果显示,共炼残渣能够提高半焦在CO2气化过程中的最大失重速率,有利于气化反应的进行,但会使半焦的燃烧性能变差且在添加量高于20%的情况下更为明显。 相似文献
3.
4.
The gasification of biomass derived char obtained via vacuum and atmospheric pyrolysis of Populus tremuloides has been studied in the ranges of 725–960°C and 0.1 to 6 MPa. CO2 was used as the oxidizing gas. The results show that char reactivity is influenced by the preheating rates and that pressure effects are significant between 850°C and 950°C. A correlation based on the expression: df/dt = k0{exp(-E/RT)}(1 - f)afβPyCO2 was used to fit the experimental data. In general, vacuum pyrolysis derived char showed a higher reactivity than atmospheric pyrolysis chars. An explanation based on a higher oxygen content of the vacuum pyrolysis char is suggested. 相似文献
5.
我国碱金属、碱土金属(AAEM)含量高的低阶煤储量丰富。高碱含量造成锅炉受热面结渣沾污及气化炉结块腐蚀等难题,低阶煤内水高、氧含量高、挥发分高、发热量低以及易氧化自燃等特性为其储、运、用带来极大的难题。热解可生产优质燃料和高附加值化工原料,也是燃烧、气化、直接液化等过程的起始阶段和/或伴随反应,煤在热解阶段发生的反应、经历的变化,对煤转化利用的效率和清洁程度起重要、甚至决定性作用。笔者对煤热解与热解半焦研究及进展进行综述性评价,着重探讨煤中AAEM对热解过程及半焦的影响。结果表明,热解研究装置模拟的工况与现代煤化工过程中煤热解所处环境相差甚远,半焦样的代表性不强使热解研究成果的指导意义不大;对煤中不同赋存形态AAEM的分离方法有待完善,还需筛选、尝试新的萃取试剂;基本掌握了煤热解过程中AAEM的变迁行为,但尚缺乏控制煤中AAEM危害的有效方法。高碱低阶煤的安全高效洁净转化利用技术仍待突破。 相似文献
6.
Zhiqiang Gong Zhentong Wang Zhenbo Wang Aixun Du Peiwen Fang Zhiqian Sun Xiaoyu Li 《加拿大化工杂志》2018,96(9):1919-1925
7.
A model for the evaporation of biomass pyrolysis oil droplets 总被引:1,自引:0,他引:1
This paper presents a numerical model for the evaporation and pyrolysis of a single droplet of pyrolysis oil derived from biomass. Continuous thermodynamics theory for multi-component droplet evaporation is used, with the fuel being represented by four fractions: organic acids, aldehydes/ketones, water, and pyrolytic lignin, each of which is described by a separate distribution function. Pyrolysis of the lignin fraction is included, and detailed properties for all fractions are presented. The model is compared with the results of suspended droplet experiments, and is shown to give good predictions of the times of the major events in the lifetime of a droplet. 相似文献
8.
为了研究干馏温度对高炉喷吹用低温干馏半焦可磨性能的影响,采用哈氏可磨性指数测定仪研究了3种原煤在不同干馏温度下制得半焦的可磨性,并采用激光粒度分析仪考查了半焦的破碎特征。研究表明,半焦的可磨性指数随着干馏温度的提高,呈现先升高后降低的趋势,低温干馏半焦的最大可磨性指数对应的最佳干馏温度为540℃;煤的可磨性预测方程不能预测半焦的可磨性;半焦的破碎过程以体积破碎为主,也进行表面破碎,干馏温度对半焦的破碎特征影响较大,半焦破碎后的粒度大小与可磨性存在对应关系。在煤低温干馏的规模化生产过程中,可以通过适当降低现有干馏操作条件优化半焦的可磨性能,以利于低温干馏半焦在高炉喷吹中的应用。 相似文献
9.
A demineralized North Dakota lignite was loaded with 2.9 wt% Ca by ion exchange. Chars were prepared by pyrolysis in N2 at 1275 K and residence times between 0.3 s and 1 h. Major differences were observed in their subsequent reactivities in 0.1 MPa air. X-ray diffraction analysis was carried out to obtain information on the state and dispersion of the Ca species on the various chars. The results clearly indicate that CaO is the predominant species responsible for catalysis of lignite char gasification. It is concluded that pyrolysis residence time also has a profound effect on CaO dispersion. Thus, a correlation was established between a fundamental physical property (catalyst dispersion) and the observed gasification behaviour of lignite chars prepared under different pyrolysis conditions. 相似文献
10.
热解作为一种生物质能源利用技术,有望为草浆黑液的碱回收提供新途径。利用10 kg·h-1搅拌热解实验装置对麦草浆黑液开展了研究,分析热解半焦浸取与燃烧熔融物溶解两种绿液制备方式在总碱回收及硅元素分布方面的差异。结果表明:热解浸取法所获得绿液中包括碳酸钠和硅酸钠在内的总碱量与燃烧溶解法相比基本相等或稍高;浸取完成后有30%~40%的硅元素未溶入绿液而留存于固相即炭粉之中,主要赋存形态为Al、Ca、Fe和Mn等非过程元素的复合硅酸盐;由于数量可观的硅元素留存于固相,因此热解浸取法相比燃烧溶解法绿液硅含量较低,也因此碳酸钠与硅酸钠之比较高。热解浸取法的硅元素分布特性有利于后续的石灰苛化操作。 相似文献
11.
Pyrolysis is an appealing technique to convert oil sludge into valuable products such as gaseous and liquid fuels, however, there is lack of research on the use of solid residue after sludge pyrolysis. This work investigated the possibility of recycling solid residue as bed material for the pyrolysis process. The thermogravimetric analysis of the raw sludge in both the pyrolysis condition and combustion condition found that part of the heavy organic compounds in the oil sludge was difficult to recover by pyrolysis, though could be combusted easily in the presence of oxygen. Therefore, by leaving the heavy compound in the solid residue, the solid residue can be self-heated by combustion and cycled to the pyrolysis process to enhance heat transfer and catalysis. A series of pyrolysis residues at varies temperatures and holding times were collected after pyrolyzing oil sludge in this study. To examine whether there is sufficient potential heat remaining in the pyrolytic residue, the residue was further investigated by FTIR, proximate, ultimate analysis, and TGA in air to study the combustion characteristics and combustion kinetics. Higher pyrolysis temperature and longer pyrolysis time resulted in more ash and fixed carbon in the residue, though less volatile matter. Residue pyrolyzed at a lower temperature was easier to combust and showed lower combustion activation energy, though the recovery of organic fuel was not significant. Pyrolysis time had very minor effect on the solid residue combustion behaviour. It is more appropriate to control the residue property by governing the pyrolysis temperature. 相似文献
12.
以市政污泥为原料热解制备污泥炭,开展了污泥炭催化还原NO的实验研究。考察了不同热解温度(400℃、600℃和800℃)和污泥初始含水率(0、66%和80%,质量分数)条件下热解制备的污泥炭的脱硝性能。研究表明,污泥炭中包含大量铁元素(41.1mg/g),提高热解温度可促进污泥炭中亚铁化合物(Fe2P和FeS)的生成,使铁元素具备催化还原NO的能力,从而显著提高污泥炭的脱硝效率。提高污泥热解初始含水率可显著提高污泥炭比表面积,污泥炭对NO的低温还原能力也随初始含水率提升而显著提高。通过对污泥炭的比表面积、X射线衍射(XRD)和傅里叶红外(FTIR)分析表征,结果表明污泥炭中亚铁化合物的生成是影响NO转化的关键影响因素,而比表面积和表面官能团类型对污泥炭脱硝反应并无明显影响。 相似文献
13.
Fe2O3对高变质程度脱灰煤热解反应性与半焦结构的影响 总被引:2,自引:0,他引:2
利用热天平研究了共混合法负载Fe2O3高变质程度脱灰煤的热解反应性,结果表明煤粉负载Fe2O3后热解反应性高于无负载的热解反应性。负载Fe2O3煤样在程序升温加热的马弗炉中制备出半焦,利用FTIR、XRD和RAMAN 等分析了半焦结构。由TG和FTIR可知,负载Fe2O3煤样热解时,热解转化率增加,热解后自由基增加。由XRD可知,Fe2O3没有使得煤样半焦的002峰衍射角发生明显变化,但使La和Lc参数明显降低,说明半焦的微晶结构石墨化程度降低。另外,在XRD分析谱图中发现部分Fe2O3被还原成FeO。由RAMAN可知,Fe2O3使半焦的G峰峰面积降低,D峰峰面积增加,说明半焦的有机结构有序化程度降低。 相似文献
14.
A Montana lignite was pretreated in either HCI—HF or ammonium acetate. The former treatment replaced cations associated with carboxyl groups by hydrogen, as well as removing essentially all mineral matter. The latter treatment replaced cations by ammonium ions but left the mineral matter intact. The pretreated lignites were then loaded with varying amounts of Ca and Mg, separately or jointly, by ion exchange. Reactivities of chars produced from these exchanged lignites, as well as the raw and pretreated lignites, were determined in air, CO2 and steam. Gasification of exchanged lignites was strongly catalysed by Ca; its activity was not affected by the presence of Mg on the char. At a comparable Ca loading, gasification rates of the 1273 K raw lignite char in the various atmospheres was higher than that of the acid treated 1273 K char but lower than that of the ammonium acetate treated 1273 K char. The former finding is attributed to chlorine retention in the lignite and char; the latter, to enhanced sulphur release during lignite pyrolysis. 相似文献
15.
He Yang Thomas H. Fletcher Yang Li Lijun Jin Sufen Li Yan Shang Haoquan Hu 《American Institute of Chemical Engineers》2020,66(2):e16834
The influence of changes in aliphatic structure on char surface area during coal pyrolysis was modeled, and the effect was introduced to a previous char surface area model for lignite pyrolysis established based on the chemical percolation devolatilization (CPD) model. The modified model can predict not only the N2 and CO2 char surface area during rapid pyrolysis of three lignites but also the CO2 char surface area of two high-volatile bituminous coals; the agreement of the modified model with experiments is improved at high temperatures. The decrease in aliphatic chain length can reduce adsorption positions around aromatic core, and decrease char surface area. When mass release is more than 55% at about 1,100 K, the predicted N2 char surface area starts to decrease with further generation of volatiles, and the increase of predicted CO2 char surface area with increasing generation of volatiles also become slow at the end of mass release. 相似文献
16.
He Yang Yahui Yang Yiyang Yin Yiming Wang Yan Shang Lijun Jin Yang Li Haoquan Hu 《American Institute of Chemical Engineers》2022,68(8):e17723
The relationship between pore structure and polymer network during coal pyrolysis was studied by analyzing the evolution of microcrystal, pore structure, and functional groups of char prepared from Naomaohu subbituminous coal by a drop-tube furnace reactor at 600–1000°C. The char specific surface area changes little with aliphatic bridge cleaving at temperatures lower than 700°C; starts to increase at 800°C with the beginning of side chain cleaving; then reaches the maximum with the methyl and methylene content together at 900°C; finally decreases with the further cleaving of aliphatic structures at higher temperatures. Moreover, the lattice stacking height is minimum at 900°C, indicating aliphatic structure can reduce the lattice order degree. These phenomena support the assumption in the CPD-PS model that the side chain cleaving generates open pores and meanwhile reduces the adsorption sites in them, making the char specific surface area first increase and then decrease. 相似文献
17.
18.
Kinetic parameters for gasification of hybrid poplar spp. char have been measured. A differential reactor was used to obtain rate data for catalytic and non-catalytic reactions of small wood char particles (1–2 mm in size) at 100 kPa for temperatures in the range 400–700 °C, steam partial pressures between 45–100 kPa, and space velocities in the range 2.0–7.3 s?1 During pyrolysis of wood without the addition of either K2CO3 or Na2CO3, the cellular structure of the wood was preserved. Additionally, this cellular structure remained intact during most of the gasification process. Addition of K2CO3 and Na2CO3 before pyrolysis caused a degradation of the regular cellular structure and an increase in the rate of gasification of the resulting char. Effectiveness factor calculations were made for particles of various sizes and results indicate that diffusion control of the gasification reaction becomes important for particles larger than 0.5 CM. 相似文献
19.
Heejin Lee Sadegh Papari Giulio Bernardini Riccardo Gallorini Luca Rosi Franco Berruti 《加拿大化工杂志》2023,101(3):1271-1285
The objectives of this study were to examine how to recycle cup waste efficiently and effectively and to determine if cup waste can be converted into liquid, solid, and gas value-added products by slow pyrolysis. The characteristics and potential utilizations of the pyrolysis products were investigated. The study included the effects of temperature, heating rate, and different feedstocks. The yield of pyrolysis oil derived from cup waste increased from 42% at 400°C to 47% at 600°C, while the yield of char decreased from 26% at 400°C to approximately 20% at 600°C. Acetic acid and levoglucosan were identified as the main components of the pyrolysis oil. The char obtained at 500°C was physically activated at 900°C for 3 h with CO2. The adsorption capacity of the activated char was investigated with model compounds, such as methyl orange, methylene blue, ibuprofen, and acetaminophen. The results showed that the adsorption capacity of the activated char was similar to that of commercial activated carbon produced from peat. The higher heating value of the produced gas stream calculated at 400°C was 19.59 MJ/Nm3. Also, conventional slow pyrolysis (CSP) and microwave-assisted pyrolysis (MAP) technologies were compared to determine the differences in terms of products yields, composition and characteristics of the pyrolysis oil, and their potential applications. The CSP yields higher liquid products than MAP. Also, the pyrolysis oil obtained from the CSP had significantly more levoglucosan and acetic acid compared to that of the MAP. 相似文献
20.
A brown coal, peat and oil shale were subjected to a rapid pyrolysis process and medium-heat-value gases together with tar were collected. The char residue was of high activity and suitable for gasification to create a two-stage gasification system. The coal-tar is used for manufacturing liquid fuels and chemicals. 相似文献