首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient flow behaviors in a novel circulating‐turbulent fluidized bed (C‐TFB) were investigated by a multifunctional optical fiber probe, that is capable of simultaneously measuring instantaneous local solids‐volume concentration, velocity and flux in gas‐solid two‐phase suspensions. Microflow behavior distinctions between the gas‐solid suspensions in a turbulent fluidized bed (TFB), conventional circulating fluidized bed (CFB), the bottom region of high‐density circulating fluidized bed (HDCFB), and the newly designed C‐TFB were also intensively studied. The experimental results show that particle‐particle interactions (collisions) dominate the motion of particles in the C‐TFB and TFB, totally different from the interaction mechanism between the gas and solid phases in the conventional CFB and the HDCFB, where the movements of particles are mainly controlled by the gas‐particle interactions (drag forces). In addition, turbulence intensity and frequency in the C‐TFB are significantly greater than those in the TFB at the same superficial gas velocity. As a result, the circulating‐turbulent fluidization is identified as a new flow regime, independent of turbulent fluidization, fast fluidization and dense suspension upflow. The gas‐solid flow in the C‐TFB has its inherent hydrodynamic characteristics, different from those in TFB, CFB and HDCFB reactors. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

2.
在内径3~20 mm的4个气-固微型流化床中,分别考察了A类和B类两种类型颗粒的流化特性,同时研究了床几何结构、操作条件、物相性质等各因素对其最小流化速度的影响.结果 表明,气-固微型流化床中的床层压降特性与颗粒类型密切相关,不同的流动状态下两种类型颗粒的流动特性存在显著地差异.在固定床阶段,与B类颗粒相比,A类颗粒与...  相似文献   

3.
Fluidization regimes were studied in liquid‐solid and gas‐Liquid‐solid fluidized beds. The liquid velocities at which regime transitions occur in liquid‐solid and gas‐liquid‐solid systems were obtained for monosize and multicomponent systems. Minimum fluidization, complete fluidization and complete mixing velocities of particles were obtained from pressure drop measurements, a collision technique or a conductivity method. The collision technique provided accurate complete fluidization and complete mixing velocities by measuring directly the particle motion. The conductivity technique, which is easier to implement, gave similar but less accurate results.  相似文献   

4.
利用声发射技术采集不同流化气速下流化床内颗粒与壁面碰撞的声信号,结合声能量及递归分析法研究不同流型下颗粒运动特征,得到鼓泡流态化到湍动流态化的临界转变速度及流型转变规律。特别是针对声能量分析无法准确区分不同床层高度处流型转变的不足,利用递归分析可有效预测系统周期性的特点,将声信号进行递归分析,研究了流化床不同位置的流型转变性质。结果表明,鼓泡流态化下颗粒运动的周期性较湍动流态化强,并能够清晰地检测到由鼓泡流态化向湍动流态化的流型转变速度,而且床层较低处的流型转变速度比床层较高处大。由此获得了一种便捷灵敏、安全环保的非侵入式流化床流型转变速度的测量技术,可用于对整个流化床内不同位置流型转变过程的实时在线监控。  相似文献   

5.
The onset liquid velocity demarcating the conventional and the circulating fluidization regimes of three‐phase fluidized beds was determined by measuring the time required to empty all particles in a batch fluidized bed at various liquid and gas velocities. Experiments were performed in a gas‐liquid‐solid circulating fluidized bed of 2.7 m in height using glass beads of 0.508 mm in diameter as solid phase and air and tap water as the fluidizing gas and liquid, respectively. The results show that gas velocity is a strong factor on the onset liquid velocity. Higher gas velocity yields a lower onset liquid velocity. It is also demonstrated that the onset liquid velocity has the same value as particle terminal velocity in a gas‐liquid mixture. Within the gas‐liquid‐solid circulating fluidization regime, the solids circulation rate is increased with the total liquid velocity and the auxiliary liquid velocity.  相似文献   

6.
In many industrial processes involving gas–solid fluidized bed rectors, the addition of a liquid phase significantly alters the hydrodynamics. To fully characterize the hydrodynamics in the fluidized bed, pressure and acoustic measuring techniques were applied to study the behavior of gas bubbles and particles. A camera was used to take pictures to verify the pressure and acoustic results. During the liquid‐addition process, the pressure technique captured the bubble size variation and bubble motion while the acoustic technique reflected particle motion and particle size growth. Hurst and V‐statistics analyses of acoustic emission were used for the first time to detect periodic behavior during the injection process. The new break formation and change trend of Vmax were used as the criteria to judge occurrence of abnormal fluidization states, such as agglomeration and gas channeling formation. These measurement techniques are beneficial in the elimination of adverse effects caused by the addition of liquid. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1056–1065, 2013  相似文献   

7.
The contact time of particles at the walls of gas fluidized beds has been studied using a radioactive particle tracking technique to monitor the position of a radioactive tracer. The solids used were sand or FCC particles fluidized by air at room temperature and atmospheric pressure at various superficial velocities, covering both bubbling and turbulent regimes of fluidization. Based on the analysis of tracer positions, the motion of individual particles near the walls of the fluidized bed was studied. The contact time, contact distance and contact frequency of the particles at the wall were evaluated from these experimental data. It was found that in a bed of sand particles, the mean wall contact time of the fluidized bed of sand particles decreases by increasing the gas velocity in the bubbling and increases in the turbulent fluidization. In other words, the particle-wall contact time is minimum at the onset of turbulent fluidization in the bed of sand particles. However, the mean wall contact time is almost constant in both regimes of fluidization in the bed of FCC particles. All the existing models in the literature predict a decreasing contact time when the gas velocity in the bed is increased. It was also shown that the contact distance increases monotonously by increasing the gas velocity in the bed of sand particles, while it is almost constant for the bed of FCC particles. Contact frequency has a trend similar to that of the contact time for both sand and FCC particles.  相似文献   

8.
Particle image velocimetry was used to investigate the evolution of multiple inlet gas jets located at the distributor base of a two‐dimensional fluidized bed setup. Results were used to estimate the solid circulation rate of the fluidized bed as well as particle‐entrainment into the individual jets. The effects of fluidization velocity, orifice diameter, orifice pitch, particle diameter, and particle density were studied. It was determined from this study that the solid circulation rate linearly increased with an increase in the fluidization velocity until the multiple jet system transitioned from isolated to an interacting system. In the interacting system of jets, the solid circulation increased with fluidization velocity but at a much lower rate. For multiple jet systems, this phenomenon may indicate the presence of an optimum operating condition with high circulation rate and low air input in the bed. © 2011 American Institute of Chemical Engineers AIChE J, 58: 3003–3015, 2012  相似文献   

9.
The dynamics of a gas‐solid fluidized bed containing Geldart Group D particles mixed with a small proportion of Geldart Group B particles are investigated using pressure fluctuations data. Time series analysis, using a variety of nonlinear dynamics tools, shows that the slugging present with Group D particles can be suppressed by the addition of a small proportion of Group B particles. The power spectra and the auto‐correlation function are used for a preliminary evaluation of dominant slug frequencies. It is shown that the bed fluidized with the mixture of Group D and B particles behaves in a less periodic manner and is dominated by more random bubble motion. On the other hand, the correlation integral is used to analyze the chaotic behaviour of the flow, through evaluation of the fractal structure of the reconstructed attractors. It is shown that the bed fluidized with Group D particles is characterized by a combination of steady slug motion and irregular particles motion. The behaviour of the fluidized bed of Group D/B particles mixture is characterized by a single correlation dimension for a wide range of fluidization velocities.  相似文献   

10.
Rotating fluidized beds in a static geometry are based on the new concept of injecting the fluidization gas tangentially in the fluidization chamber, via multiple gas inlet slots in its cylindrical outer wall. The tangential injection of the fluidization gas fluidizes the particles tangentially and induces a rotating motion, generating a centrifugal field. Radial fluidization of the particle bed is created by introducing a radially inwards motion of the fluidization gas, towards a centrally positioned chimney. Correctly balancing the centrifugal force and the radial gas-solid drag force requires an optimization of the fluidization chamber design for each given type of particles. Solids feeding and removal can be continuous, via one of the end plates of the fluidization chamber.The fluidization behavior of both large diameter, low density polymer particles and small diameter, higher density salt particles is investigated at different solids loadings in a 24 cm diameter, 13.5 cm long non-optimized fluidization chamber. Scale-up to a 36 cm diameter fluidization chamber is illustrated.Provided that the solids loading is sufficiently high, a stable rotating fluidized bed in a static geometry is obtained. This requires to minimize the solids losses via the chimney. With the polymer particles, a dense and uniform bed is observed, whereas with the salt particles a less dense and less uniform bubbling bed is observed. Solids losses via the chimney are much more pronounced with the salt than with the polymer particles.Slugging and channeling occur at too low solids loadings. The hydrostatic gas phase pressure profiles along the outer cylindrical wall of the fluidization chamber are a good indicator of the particle bed uniformity and of channeling and slugging. The fluidization gas flow rate has only a minor effect on the occurrence of channeling and slugging, the solids loading in the fluidization chamber being the determining factor for obtaining a stable and uniform rotating fluidized bed in a static geometry.  相似文献   

11.
This investigation was performed to study the underlying structure characteristics of acoustic emission (AE) signals, which could be helpful not only to understand a relatively complete picture of hydrodynamics in multiphase flow systems, but also to extract the most useful information from the original signals with respect to a particular measurement requirement. However, due to AE signals are made up of emission from many acoustic sources at different scales, the resolution of AE signals is often very complicated and appears to be relatively poorly researched. In this study, the structure characteristics of AE signals measured both in gas–solid fluidized bed and liquid–solid stirred tank were researched in detail by resorting to wavelet transform and rescaled range analysis. A general criterion was proposed to resolve AE signals into three physical‐related characteristic scales, i.e., microscale, mesoscale, and macroscale. Multiscale resolution of AE signals implied that AE signals in microscale represented totally the dynamics of solid phase and could be applied to measure particle‐related properties. Furthermore, based on the structure characteristics of AE signals, useful features related to particles motion were extracted to establish two new prediction models, one for on‐line measurements of particle size distribution (PSD) and average particle size in gas–solid fluidized bed and the other for on‐line measurement of the suspension height in liquid–solid stirred tank. The prediction results indicated that (1) measurements of PSD and average particle size using AE method showed a fairly good agreement with that using sieve method both for laboratory scale and plant scale fluidized beds, and (2) measurements of the suspension height using AE method showed a fairly good agreement with that using visual method. The results thus validated that the extracted features based on analyses of structure characteristics of AE signals were very useful for establishing effective on‐line measurement models with respect to some particular applications. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

12.
This study describes the particle characteristics and fluidized hydrodynamics of peat granules. Peat granules, moistened with water, are a potential packing material in a gas–solid fluidized bed bioreactor used for treating air pollution. Information on the fluidization of wet peat granules is lacking. In order to advance this new type of bioreactor and to scale up its design for industrial use, fluidization studies of suitable packing material are required. Using abiotic experiments, three sizes of peat granules have been fluidized with air and fluidization characteristics were observed at different superficial gas velocities. Relative to other biomass particles, peat granules have a high particle density and sphericity, which contributes to favourable fluidization behaviour, without gas channelling. Fluidization experiments demonstrate that as the mean size of peat particles increased, minimum fluidization velocity increased. Increasing the moisture content of the peat granules resulted in a transition from bubbling bed fluidization to poor fluidization behaviour. Other types of moist biomass particles such as sawdust are difficult to fluidize and typically exhibit Geldart group C behaviour. In contrast, it was observed that wet peat granules could be fluidized in a bubbling bed regime, typical of group B particles.  相似文献   

13.
Particle and bubble motion plays an important role in determining the hydrodynamic characteristics of a fluidized system. The dynamic parameters of a fluidized bed are reflection of the complex correlation between particle–particle and particle–bubble in a system. A two-dimensional Eulerian–Eulerian model integrating the kinetic theory of granular flow is used to simulate the bubble and linear low density polyethylene (LLDPE) particle dynamic behavior in a gas–solid fluidized bed. The simulated method is validated by pressure fluctuation experiment. The computed vertical turbulent energy spectrum of particles is applied to identify the particle motion intensity and the inhomogeneity of turbulent energy dissipation. The energy spectrum captures the Levy–Kolmogorov law in inertial range at high frequency. Furthermore, the flatness factors of wavelet decomposition coefficients of particle fluctuation velocity are for the first time introduced to analyze the intermittence caused by coherent structures in the flow field. The results show that the intermittence in dissipation range is much stronger than that in energy-containing and inertial range, and reinforces rapidly as the radial distance and the bed height increase. Moreover, the acoustic emission (AE) energy is found to be able to indicate the flow regimes. By combing granular temperature and AE energy, the relationship between the spatial distribution of granular temperature and the flow regimes is established. To get more detail of bubble motion behavior, the power spectrum of voidage fluctuation is analyzed. This work provides valuable insights into the dynamic characteristics and the flow field information of a gas–solid fluidized bed by CFD simulation.  相似文献   

14.
A liquid‐fluidized bed of inert particles was used to separate a pure object from a mixture. One (binary solid‐liquid‐fluidized bed) or two (tertiary solid‐liquid‐fluidized bed) types of objects with relatively large‐sized particles were immersed in an inert‐particle bed, and the bed behavior was observed for different liquid velocities. The void fraction and apparent density of the inert‐particle suspension were predicted by considering the effect of the change in object position for different liquid velocities. The prediction method, which considers the change in the minimum fluidization velocity, accurately expressed the changes in the void fraction and the apparent density of the bed with the position of the objects in the bed. Using this method, the liquid velocity required to separate a certain kind of object from a mixture can be predicted.  相似文献   

15.
D类颗粒节涌流态化的实验和数值模拟   总被引:2,自引:1,他引:1  
应用双流体气固两相流模型,对均一粒径分布的Geldart D类颗粒的节涌流态化过程进行了模拟. 研究了流化过程中流化状态转变、床层膨胀比以及压力脉动功率谱,从Froude准数和颗粒动能的角度分析了模拟结果中的流化特性,并与实验数据进行了对比. 模拟结果准确预测了Geldart D类颗粒的节涌流态化特性,对床层膨胀高度和功率谱的预测与实验基本吻合. Froude准数和颗粒动能随时间的周期性脉动较好地反映了流化床内节涌流态化的气泡行为.  相似文献   

16.
A method is proposed for calculating the steady-state distribution of mixtures of solid particles and of the axial bed porosity in liquid fluidized beds. The extent of bed stratification is assumed to be determined by the differences among the settling velocities of the fluidized particles and the random motion of these particles that is a result of fluidization. Predictions of particle distribution based on the present method were found to agree reasonably well with experimental data.  相似文献   

17.
Gas-solid heat transfer in rotating fluidized beds in a static geometry is theoretically and numerically investigated. Computational fluid dynamics (CFD) simulations of the particle bed temperature response to a step change in the fluidization gas temperature are presented to illustrate the gas-solid heat transfer characteristics. A comparison with conventional fluidized beds is made. Rotating fluidized beds in a static geometry can operate at centrifugal forces multiple times gravity, allowing increased gas-solid slip velocities and resulting gas-solid heat transfer coefficients. The high ratio of the cylindrically shaped particle bed “width” to “height” allows a further increase of the specific fluidization gas flow rates. The higher specific fluidization gas flow rates and increased gas-solid slip velocities drastically increase the rate of gas-solid heat transfer in rotating fluidized beds in a static geometry. Furthermore, both the centrifugal force and the counteracting radial gas-solid drag force being influenced by the fluidization gas flow rate in a similar way, rotating fluidized beds in a static geometry offer extreme flexibility with respect to the fluidization gas flow rate and the related cooling or heating. Finally, the uniformity of the particle bed temperature is improved by the tangential fluidization and resulting rotational motion of the particle bed.  相似文献   

18.
《Fuel》2005,84(14-15):1739-1748
The fluidization behavior of rice husk–sand mixture in the gas bubbling fluidized bed is experimentally and theoretically studied. The relevancy of the pressure drop profile of rice husk–sand mixture to the definition of its minimum fluidization velocity is discussed, and the minimum fluidization velocity of rice husk–sand binary mixture is determined. The distributions of mass fraction of rice husk particles along the bed height are measured, and the profiles of the mean particle diameter of mixture are determined. A multi-fluid gas–solid flow model is presented where equations are derived from the kinetic theory of granular flow. Separate transport equations are constructed for each of the particle classes, allowing for the interaction between particle classes, as well as the momentum and energy are exchanged between the respective classes and the carrier gas. The distributions of the mass fraction of rice husk particles and the mean particle diameter of binary mixture are predicted. The numerical results are analyzed, and compared with experimental data.  相似文献   

19.
针对多段气化炉(上部快速床、下部鼓泡床),采用MP-PIC(Multi-Phase Particle In Cell)方法模拟了多粒径煤粉颗粒的三维全循环流化过程,考察了鼓泡床与快速床床径比及鼓泡床和快速床之间的过渡段高度对气化炉内流动特性的影响。结果表明,基本工况下,大颗粒主要存在于下部鼓泡床中,细颗粒主要存在于上部快速床内,但细颗粒会通过旋风分离器和回料管再次进入鼓泡床参与循环。进入旋风分离器的大部分为半径622 ?m以下的小颗粒,无1216 ?m以上的大颗粒。旋风分离器对小颗粒的分离效率为99.75%,分离效率良好。增大床径比(即减小快速床直径),快速床中气速增大,整个气化床更快达到稳定状态,被夹带到快速床中的颗粒增多,所夹带的颗粒粒径增大。过渡段高度存在一个适当值(炉高0.6~1.0 m),升高或降低过渡段高度,快速床中颗粒浓度均增大,颗粒通量均升高,旋风分离效率降低。  相似文献   

20.
Collisional motion of inelastic rough spheres is analyzed on the basis of the kinetic theory for flow of dense, slightly inelastic, slightly rough sphere with the consideration of gas–solid interactions. The fluctuation kinetic energy of particles is introduced to characterize the random motion of particles as a measure of the translational and rotational velocities fluctuations. The kinetic energy transport equation is proposed with the consideration of the redistribution of particle kinetic energy between the rotational and translational modes and kinetic energy dissipation by collisions. The solid pressure and viscosity are obtained in terms of the particle roughness and restitution coefficient. The partition of the random‐motion kinetic energy of inelastic rough particles between rotational and translational modes is shown to be strongly affected by the particle restitution coefficient and roughness. Hydrodynamics of gas–solid bubbling fluidized beds are numerically simulated on the basis of the kinetic theory for flow of rough spheres. Computed profiles of particles are in agreement with the experimental measurements in a bubbling fluidized bed. The effect of roughness on the distribution of energy dissipation, kinetic energy, and viscosity of particles is analyzed. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号