首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— High‐performance organic light‐emitting diodes (OLEDs) are promoting future applications of solid‐state lighting and flat‐panel displays. We demonstrate here that the performance demands for OLEDs are met by the PIN (p‐doped hole‐transport layer/intrinsically conductive emission layer/n‐doped electron‐transport layer) approach. This approach enables high current efficiency, low driving voltage, as well as long OLED lifetimes. Data on very‐high‐efficiency diodes (power efficiencies exceeding 70 lm/W) incorporating a double‐emission layer, comprised of two bipolar layers doped with tris(phenylpyridine)iridium [Ir(ppy)3], into the PIN architecture are shown. Lifetimes of more than 220,000 hours at a brightness of 150 cd/m2 are reported for a red PIN diode. The PIN approach further allows the integration of highly efficient top‐emitting diodes on a wide range of substrates. This is an important factor, especially for display applications where the compatibility of PIN OLEDs with various kinds of substrates is a key advantage. The PIN concept is very compatible with different backplanes, including passive‐matrix substrates as well as active‐matrix substrates on low‐temperature polysilicon (LTPS) or, in particular, amorphous silicon (a‐Si).  相似文献   

2.
Abstract— A new approach to full‐color printable phosphorescent organic light‐emitting devices (P2OLEDs) is reported. Unlike conventional solution‐processed OLEDs that contain conjugated polymers in the emissive layer, the P2OLED's emissive layer consists of small‐molecule materials. A red P2OLED that exhibits a luminous efficiency of 11.6 cd/A and a projected lifetime of 100,000 hours from an initial luminance of 500 cd/m2, a green P2OLED with a luminous efficiency of 34 cd/A and a projected lifetime of 63,000 hours from an initial luminance of 1000 cd/m2, a light‐blue P2OLED with a luminous efficiency of 19 cd/A and a projected lifetime 6000 hours from an initial luminance of 500 cd/m2, and a blue P2OLED with a luminous efficiency of 6.2 cd/A and a projected lifetime of 1000 hours from an initial luminance of 500 cd/m2 is presented.  相似文献   

3.
Abstract— The development of highly efficient and color‐saturated green‐fluorescent C545T dye‐doped flexible inverted bottom‐emitting organic light‐emitting diode (IBOLED) is reported. This was enabled by the insertion of a silver (Ag) based semi‐transparent metal‐assisted electron‐injection layer between the ITO cathode and n‐doped electron‐transporting layer on a flexible polyethersulphone substrate. This flexible IBOLED with an ITO/Ag bilayer cathode with its synergistic microcavity effect achieved luminous efficiencies of 20.4 cd/A and 12 lm/W and a saturated CIEx,y of (0.28, 0.68) at 20 mA/cm2, which are 1.5 times higher than those of a conventional OLED.  相似文献   

4.
Abstract— Currently, three issues are identified that decide upon the commercial success of organic light‐emitting diodes (OLEDs), both in display and lighting applications: power efficiency, lifetime, and price competitiveness. PIN OLEDs are widely seen as the preferred way to maximize power efficiency. Here, it is reported that this concept also delivers the world longest lifetimes. For a highly efficient deep‐red PIN OLED, a half‐lifetime of 25,000 hours for a starting brightness of 10,000 cd/m2 and a minimal voltage increase over lifetime is reported. This value corresponds to more than 1 × 106 hours at 1000 cd/m2 using an exponent of n = 1.7, which was measured by driving the OLEDs at different starting luminances. Because there is no initial luminance drop, these PIN OLEDs also exhibit a very high 80% lifetime (>300,000 hours at 1000 cd/m2). New record lifetime values for blue and green will be reported as well. Additionally, further topics that have impact on the production yield and cost such as the newly developed air‐stable organic n‐doping material NDN‐26 and top‐emitting structures will be discussed.  相似文献   

5.
Abstract— High‐efficiency and simple‐structured red‐emitting phosphorescent devices based on the hole‐injection layer of 4,4′,4″‐tris(2‐naphthylphenyl‐phenylamino)‐triphenylamine [2‐TNATA] and the emissive layer of bis(10‐hydroxybenzo[h] quinolinato)beryllium complex [Bebq2] doped with SFC‐411 (proprietary red phosphorescent dye) have been researched. The fabricated devices are divided into three types depending on whether or not the hole‐transport layer of N,N′‐bis(1 ‐naphthyl)‐N, N'‐diphenyl‐1,1′‐biphenyl‐4,4′‐diamine [NPB] or the electron‐transport layer of SFC‐137 (proprietary electron transporting material) is included. Among the experimental devices, the best electroluminescent characteristics were obtained for the device with an emission structure of 2‐TNATA/Bebq2:SFC‐411/SFC‐137. In this device, current density and luminance were found to be 200 mA/cm2 and 15,000 cd/m2 at an applied voltage of 7 V, respectively. Current efficiencies were 15 and 11.6 cd/A under a luminance of 500 and 5000 cd/m2. The peak wavelength in the electroluminescent spectral distribution and color coordinates on the Commission Internationale de I'Eclairage (CIE) chart were 628 nm and (0.67, 0.33), respectively.  相似文献   

6.
Abstract— A reflective composite silver electrode is proposed and characterized as the middle electrode of a stacked organic light‐emitting diode (OLED) with double‐sided light emission. The proposed electrode is composed of a thermally evaporated stack of LiF (1 nm)/Al (3 nm)/Ag (70 nm) layers. The LiF/Al and the plasma‐treated Ag of the electrode function well as the respective cathode and anode of the bottom‐ and top‐emitting stacked OLEDs, with both being of the non‐inverted type. Power efficiencies of 10.3 and 12.1 lm/W at 100 cd/m2 have been measured for bottom‐ and top‐emitting OLEDs, respectively, using dye doping. The stacked OLED having this bipolar middle electrode can be constructed as a two‐terminal‐only device, allowing for simpler driving schemes in double‐side‐emitting passive‐/active‐matrix OLED displays.  相似文献   

7.
Abstract— New blue‐emitting thin‐film‐electroluminescent (TFEL) devices that satisfy the requirements for full‐color TFEL displays were developed. Eu2+‐doped BaAl2S4 thin films were used for the emission layer. BaAl2S4:Eu thin films were prepared by two‐target pulsed‐electron‐beam evaporation suitable for the deposition of multinary compounds that have difficulty in obtaining stoichiometoric thin films. The EL spectrum only had a peak at around 470 nm. The Commission Interantionale de l'Eclairge (CIE) color coordinates were x = 0.12 and y = 0.10. The luminance level from a 50‐Hz pulses voltage was 65 cd/m2.  相似文献   

8.
Abstract— In this paper, we report on the utilization of zirconium (IV) tetras (8‐hydroxyquinoline), Zrq4, and hafnium (IV) tetras (8‐hydroxyquinoline), Hfq4, as an electroluminescent material in fluorescent organic light‐emitting diodes (OLED) and as electron transport layer (ETL) for high‐efficiency electrophosphorescent organic light‐emitting diodes (PHOLEDs). Structural studies show that the metal tetraquinolates (Mq4) have a very low dipole moment (<0.1 D), in contrast to Alq3 which has an estimated dipole moment of 4.7 D. Mobility measurements show that Mq4 complexes give mobilities of (3.5 ± 0.5) × 10?6 cm2/V‐sec, which are close to the values reported for Alq3, i.e., (2.3–4.3) × 10?6 cm2/V‐sec. OLEDs were prepared with the structure ITO/NPD (400 Å)/Mqn (500 Å)/LiF/Al (NPD = 4‐4′‐bis[N‐(1‐naphthyl)‐N‐phenyl‐amino]bi phenyl, Mqn = Alq3, Zrq4, Hfq4. The Mq4‐based OLEDs gave external efficiencies of 1.1%, while the Alq3‐based devices of the same structure gave efficiencies of 0.7%. PHOLEDs have been fabricated with the structure ITO/NPD (500 Å)/CBP‐8% Ir(ppy)3 (250 Å)/BCP (150 Å)/Mqn (250 Å)/LiF/Al (CBP = N,N′‐dicarbazolyl‐4‐4′‐biphenyl, Ir(ppy)3 = fac‐tris(2‐phenylpyrridine)iridium, BCP = bathocruprione). PHOLEDs with Mq4 ETLs showed a greatly improved efficiency, when compared to Alq3‐based PHOLEDs. The Zrq4‐based PHOLEDs gave a peak external quantum efficiency of 14% at 0.3 mA/cm2 (150 cd/m2), while the Hfq4 based PHOLED gave a peak external quantum efficiency of 15% at 0.6 mA/cm2 (300 cd/m2). Comparable PHOLEDs with an Alq3 ETL give peak external quantum efficiencies of 8.0% at 0.5 mA/cm2. The devices gave an electroluminescence (EL) spectrum consisting only of fac‐tris(2‐phenylpyrridine)iridium (Ir(ppy)3) dopant emission (CIE coordinates of 0.26, 0.66), with no Mq4 emission observed at any bias level.  相似文献   

9.
Abstract— An efficient pure blue multilayer organic light‐emitting diode employing 1,4‐bis[2‐(3‐N‐ethylcarbazoryl)vinyl]benzene (BCzVB) doped into 4,4′‐N,N′‐dicarbazole‐biphyenyl (CBP) is reported. The device structure is ITO (indium tin oxide)/TPD (N,N′‐diphenyl‐N,N′‐bis (3‐methylphenyl)‐1,1′biphenyl‐4,4′diamine)/CBP:BCzVB/Alq3 (tris‐(8‐hydroxy‐quinolinato) aluminum)/Liq (8‐hydroxy‐quinolinato lithium)/Al; here TPD was used as the hole‐transporting layer, CBP as the blue‐emitting host, BCzVB as the blue dopant, Alq3 as the electron‐transporting layer, Liq as the electron‐injection layer, and Al as the cathode, respectively. A maximum luminance of 8500 cd/m2 and a device efficiency of 3.5 cd/A were achieved. The CIE co‐ordinates were x = 0.15, y = 0.16. The electroluminescent spectra reveal a dominant peak at 448 nm and additional peaks at 476 nm with a full width at half maximum of 60 nm. The Föster energy transfer and, especially, carrier trapping models were considered to be the main mechanism for exciton formation on BCzVB molecules under electrical excitation.  相似文献   

10.
Abstract— A new type of single‐layer blue‐phosphorescence organic light‐emitting devices (OLEDs) containing poly(9‐vinylcarbazole) (PVK) and small‐molecule‐based amorphous ambipolar bis(3,5‐di(9H‐carbazol‐9‐yl)phenyl) diphenylsilane (SimCP2) as the co‐host material have been demonstrated. All active materials [PVK, SimCP2, Flrpic (blue‐phosphorescence dopant), and OXD‐7 (electron transport)] were mixed in a single layer for solution processing in the fabrication of OLEDs. The SimCP2 small‐molecule host has adequate high electron and hole‐carrier mobiltieis of ~10?4 cm2/V‐sec and a sufficiently large triplet state energy of ~2.70 eV in confining emission energy on FIrpic. Based on such an architecture for single‐layer devices, a maximum external quantum efficiency of 6.2%, luminous efficiency of 15.8 cd/A, luminous power efficiency of 11 lm/W, and Commision Internale de l'Eclairage (CIEx,y) coordinates of (0.14,0.32) were achieved. Compared with those having PVK as the single‐host material, the improvement in the device performance is attributed to the balance of hole and electron mobilities of the co‐host material, efficient triplet‐state energy confinement on FIrpic, and the high homogeneity of the thin‐film active layer. Flexible blue‐phosphorescence OLEDs based on solution‐processed SimCP2 host material (withou PVK) have been demonstrated as well.  相似文献   

11.
Abstract— The development of a high‐brightness low‐voltage yellow‐light‐emitting polymer system suitable for use in low‐cost passive‐matrix displays will be reported. Average device efficiencies of 16 lm/W at 100 and 1000 cd/m2 are achieved at 2.1 and 2.4 V, respectively. A luminance level of 100,000 cd/m2 is achieved at 5.5 V.  相似文献   

12.
Abstract— An active‐matrix organic light‐emitting diode (AMOLED) display driven by hydrogenated amorphous‐silicon thin‐film transistors (a‐Si:H TFTs) on flexible, stainless‐steel foil was demonstrated. The 2‐TFT voltage‐programmed pixel circuits were fabricated using a standard a‐Si:H process at maximum temperature of 280°C in a bottom‐gate staggered source‐drain geometry. The 70‐ppi monochrome display consists of (48 × 4) × 48 subpixels of 92 ×369 μm each, with an aperture ratio of 48%. The a‐Si:H TFT pixel circuits drive top‐emitting green electrophosphorescent OLEDs to a peak luminance of 2000 cd/m2.  相似文献   

13.
Abstract— A novel method for the fabrication of ink‐jet‐printed organic light‐emitting‐diode devices is discussed. Unlike previously reported solution‐processed OLED devices, the emissive layer of OLED devices reported here does not contain polymeric materials. The emission of the ink‐jet‐printed P2OLED (IJ‐P2OLED) device is demonstrated for the first time. It shows good color and uniform emission although it uses small‐molecule solution. Ink‐jet‐printed green P2OLED devices possess a high luminous efficiency of 22 cd/A at 2000 cd/m2 and is based on phosphorescent emission. The latest solution‐processed phosphorescent OLED performance by spin‐coating is disclosed. The red P2OLED exhibits a projected LT50 of >53,000 hours with a luminous efficiency of 9 cd/A at 500 cd/m2. The green P2OLED shows a projected LT50 of >52,000 hours with a luminous efficiency of 35 cd/A at 1000 cd/m2. Also discussed is a newly developed sky‐blue P2OLED with a projected LT50 of >3000 hour and a luminous efficiency of 18 cd/A at 500 cd/m2.  相似文献   

14.
Abstract— The three critical parameters in determining the commercial success of organic light‐emitting diodes (OLEDs), both in display and lighting applications, are power efficiency, lifetime, and price competitiveness. PIN technology is widely considered as the preferred way to maximize power efficiency and lifetime. Here, a high‐efficiency and long‐lifetime white‐light‐emitting diode, which has been realized by stacking a blue‐fluorescent emission unit together with green‐ and red‐phosphorescent emission units, is reported. Proprietary materials have been used in transport layers of each emission unit, which significantly improves the power efficiency and stability. The power efficiency at 1000 cd/m2 is 38 lm/W with CIE color coordinates of (0.43, 0.44) and a color‐rendering index (CRI) of 90. An extrapolated lifetime at an initial luminance of 1000 cd/m2 is above 100,000 hours, which fulfils the specifications for most applications. The emission color can also be easily tuned towards the equal‐energy white for display applications by selecting emitting materials and varying the transport‐layer cavities.  相似文献   

15.
We report that a solution‐processed vanadium pentoxide (V2O5) layer can be utilized as an effective and stable hole injection layer in organic light‐emitting diodes and polymer light‐emitting diodes instead of polyethylene dioxythiophene : polystyrenesulfonate (PEDOT : PSS). The organic light‐emitting diode and polymer light‐emitting diode with the V2O5 layer have driving voltages that are 2.2 and 0.3 V lower for 1000 cd/m2, respectively, than the devices with PEDOT : PSS. In addition, the devices with the V2O5 layer show improved operational stability compared with the devices with PEDOT : PSS. Therefore, a solution‐processed V2O5 layer can be utilized as an effective and stable hole injection layer instead of PEDOT : PSS.  相似文献   

16.
Abstract— Light‐emitting transistors having a metal‐base organic transistor (MBOT) structure demonstrate both the function of an organic thin‐film transistor (OTFT) and organic light‐emitting diode (OLED). The MBOT is a vertical‐type organic transistor having a simple structure composed of organic/metal/organic layers demonstrating high‐current and low‐voltage operation. The light‐emitting MBOT was fabricated simply by inserting additional layers of hole‐transporting and emissive materials used in the OLED into the col lector layer. The device showed perfect surface emission similar to an OLED. A luminance modulation of 370 cd/m2 was observed at a collector voltage of 20 V and a base voltage of 3 V. This device can be applied to an OLED display device to increase the numerical aperture or reduce the required current of the TFT backplane.  相似文献   

17.
With the development of organic light‐emitting devices (OLEDs), the transparent OLED is also restricted by its efficiency and stability. Thus, in order to improve the transmittance and luminous efficiency of transparent OLED, the cathode mesh mask combined with Al:Ag alloy is adopted to prepare the cathode of transparent OLED, which would enhanced the luminance, efficiency, and transmittance of the device. With the same driving voltage, the device has the highest brightness, when the cathode thickness is 85 nm. At the voltage of 13 and 14 V, the luminance, for bottom‐emission and top‐emission, is 9501 cd/m2 and 1840 cd/m2, respectively. The entire transmittance of the device has achieved about 78% at a 480 nm wavelength.  相似文献   

18.
Abstract— The selective area growth (SAG) of a InGaN/AlGaN light‐emitting diode (LED) is performed by using mixed‐source hydride vapor‐phase epitaxy (HVPE) with a multi‐sliding boat system. The SAG‐InGaN/AlGaN LED consists of a Si‐doped AlGaN cladding layer, an InGaN active layer, a Mg‐doped AlGaN cladding layer, and a Mg‐doped GaN capping layer. The carrier concentration of the n‐type AlxGa1?xN (x ~ 16%) cladding layer depends on the amount of poly‐Si placed in the Al‐Ga source. The carrier concentration is varied from 2.0 × 1016 to 1.1 × 1017 cm?3. Electroluminescence (EL) characteristics show an emission peak wavelength at 426 nm with a full width at half‐maximum (FWHM) of approximately 0.47 eV at 20 mA. It was found that the mixed‐source HVPE method with a multi‐sliding boat system is a candidate growth method for III‐nitride LEDs.  相似文献   

19.
Abstract— A high‐performance inorganic electroluminescence (EL) device has been successfully developed by using an EL structure with a thick dielectric layer (TDEL) and sputtered BaAl2S4:Eu blue phosphor. The luminance and efficacy were higher than 2300 cd/m2 and 2.5 lm/W at L60, 120 Hz, respectively. Furthermore, the luminance at L60, 1.2 kHz was more than 23,000 cd/m2. The phosphor layer has a single‐phase and a highly oriented crystalline structure. The phosphor also shows high stability in air. A 34‐in. high‐definition television (HDTV) has been developed by combining a TDEL structure and color‐conversion materials. The panels with an optimized color filter demonstrated a peak luminance of 350 cd/m2, a color gamut of more than 100% NTSC, and a wide viewing angle similar to that of plasma‐display panels. The high reproducibility of the 34‐in. panels using our pilot line has been confirmed.  相似文献   

20.
Abstract— Efficient white organic light‐emitting diodes with both a graded mixed layer as the blue‐emitting layer and an electron‐blocking layer, and a DPVBi:Rubrene layer as a yellow‐emitting layer have been demonstrated. The mixing of the two colors occurs due to a balanced split of the exciton‐recombination zone by the graded mixed layer serving as the electron‐blocking layer. The white organic light‐emitting diode with an ITO/2‐TNATA 30 nm/NPB 30 nm/DPVBi:Rubrene (1.0 wt.%) 5 nm/NPB:DPVBi (9:1) 150 nm/NPB:DPVBi (5:5) 75 nm/NPB:DPVBi (3:7) 75 nm/NPB:DPVBi (2:8) 75 nm/NPB:DPVBi (0.5:9.5) 75 nm/BCP 5 nm/Alq3 30 nm/LiF 0.5 nm/Al 100 nm structure is chosen as a device with an optimal configuration among devices investigated in this study. The employment of the graded mixed layer in the device is effective in suppressing the color shift at different voltages. The white light, with a Commission Internationale d'Eclairage chromaticity coordinates of (0.33, 0.34), is obtained with an applied voltage of 10.5 V for the device. At the applied voltage, the luminance is 4882 cd/m2 and the current efficiency is 5.03 cd/A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号