首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— A new approach to resolution enhancement of an integral‐imaging (II) three‐dimensional display using multi‐directional elemental images is proposed. The proposed method uses a special lens made up of nine pieces of a single Fresnel lens which are collected from different parts of the same lens. This composite lens is placed in front of the lens array such that it generates nine sets of directional elemental images to the lens array. These elemental images are overlapped on the lens array and produce nine point light sources per each elemental lens at different positions in the focal plane of the lens array. Nine sets of elemental images are projected by a high‐speed digital micromirror device and are tilted by a two‐dimensional scanning mirror system, maintaining the time‐multiplexing sequence for nine pieces of the composite lens. In this method, the concentration of the point light sources in the focal plane of the lens array is nine‐times higher, i.e., the distance between two adjacent point light sources is three times smaller than that for a conventional II display; hence, the resolution of three‐dimensional image is enhanced.  相似文献   

2.
Abstract— Several rare‐earth‐doped fluoride crystals that are excited to emit visible light by sequential two‐photon absorption have been investigated as display‐medium candidates for static volumetric three‐dimensional displays. Dispersion of powders of these materials in a refractive‐index‐matched polymer is reported because such a medium may result in a scalable display. The scattering problem in such a medium is greatly reduced by index‐matching the polymer to the crystalline particles. An index‐matching condition that optimizes the performance is identified.  相似文献   

3.
Abstract— Although there are numerous types of floating‐image display systems which can project three‐dimensional (3‐D) images into real space through a convex lens or a concave mirror, most of them provide only one image plane in space to the observer; therefore, they lack an in‐depth feeling. In order to enhance a real 3‐D feeling of floating images, a multi‐plane floating display is required. In this paper, a novel two‐plane electro‐floating display system using 3‐D integral images is proposed. One plane for the object image is provided by an electro‐floating display system, and the other plane for the background image is provided with the 3‐D integral imaging system. Consequently, the proposed two‐plane electro‐floating display system, having a 3‐D background, can provide floated images in front of background integral images resulting in a different perspective to the observer. To show the usefulness of the proposed system, experiments were carried out and their results are presented. In addition, the prototype was practically implemented and successfully tested.  相似文献   

4.
Abstract— An autostereoscopic 3‐D display suitable for the mobile environment is prototyped and evaluated. First, the required conditions for a 3‐D display in a mobile environment are considered, and the three major requirements are clarified: small size, viewing‐position flexibility, and application support. An application of a mobile‐type 3‐D display should be different from that of a large‐sized 3‐D display because a mobile‐type 3‐D display cannot realize the feeling of immersion while large‐sized 3‐D displays can realize it easily. From this assumption, it is considered that it is important to realize the feeling to handle a 3‐D image. Three types of 3‐D displays are developed to satisfy these requirements. They are subjectively evaluated to confirm their attractiveness. Results of the tests show that intuitive interaction can increase the reality of the 3‐D image in the sense of unity and also can improve the solidity and depth impression of the 3‐D image.  相似文献   

5.
Abstract— An autostereoscopic display based on dual‐directional light guides with a fast‐switching liquid‐crystal panel was designed and fabricated to provide better 3‐D perception with image qualities comparable to that of 2‐D displays. With two identical micro‐grooved light guides, each with a light‐controlled ability in one direction, two restricted viewing cones are formed to project pairs of parallax images to the viewer's respective eyes sequentially. Crosstalk of less than 10% located within ±8°–±30° and an LC response time of 7.1 msec for a 1.8‐in. LCD panel can yield acceptable 3‐D perceptions at viewing distance of 5.6–23 cm. Moreover, 2‐D/3‐D compatibility is provided in this module.  相似文献   

6.
In this paper, we present an autostereoscopic 3D display based on the moiré effect. The left and right images are built of the moiré patterns. When observed from a proper location, these moiré images can be perceived stereoscopically without special eyeglasses. The principle is confirmed by preliminary experiments.  相似文献   

7.
A polarization modulated directional backlight autostereoscopic display is proposed and demonstrated. The system consists of the orthogonally polarized backlight, the Fresnel lens array, a light shaping diffuser film, and a liquid crystal display (LCD) with a microphase retardation film. The autostereoscopic image pair carried by the directional light with different polarization directions is simultaneously projected to different spatial directions. The simulation and experimental results show that the directional projection of parallax images is realized for a high-quality autostereoscopic display with large viewing angle and continuous viewing volume, hence making it suitable for practical applications.  相似文献   

8.
Abstract— A flat‐panel display with a slanted subpixel arrangement has been developed for a multi‐view three‐dimensional (3‐D) display. A set of 3M × N subpixels (M × N subpixels for each R, G, and B color) corresponds to one of the cylindrical lenses, which constitutes a lenticular lens, to construct each 3‐D pixel of a multi‐view display that offers M × N views. Subpixels of the same color in each 3‐D pixel have different horizontal positions, and the R, G, and B subpixels are repeated in the horizontal direction. In addition, the ray‐emitting areas of the subpixels within a 3‐D pixel are continuous in the horizontal direction for each color. One of the vertical edges of each subpixel has the same horizontal position as the opposite vertical edge of another subpixel of the same color. Cross‐talk among viewing zones is theoretically zero. This structure is suitable for providing a large number of views. A liquid‐crystal panel having this slanted subpixel arrangement was fabricated to construct a mobile 3‐D display with 16 views and a 3‐D resolution of 256 × 192. A 3‐D pixel is comprised of 12 × 4 subpixels (M = 4 and N = 4). The screen size was 2.57 in.  相似文献   

9.
Abstract— This study develops an autostereoscopic display based on a multiple miniature projector array to provide a scalable solution for a high‐resolution 3‐D display with large viewing freedom. To minimize distortion and dispersion, and to maximize the modulation transfer function (MTF) of the projection image to optimize 3‐D image quality, a dedicated projection lens and an accurate six‐axis adjusting platform for the miniature projector were designed and fabricated. Image‐blending technology based on a lookup table was adopted to combine images from 30 miniature projectors into a seamless single image. The result was a 35‐in. autostereoscopic display with 60 views ata 30° viewing angle, 90° FOV, and large range of viewing distance. The proposed system exhibits very smooth motion parallax when viewers move around in front of it.  相似文献   

10.
Abstract— This work is related to static volumetric crystals which scintillate light when two laser beams are intersected within the crystal. The geometry in this crystal is optimized for linear slices. Most volumetric displays are based on rotational surfaces, which generate the images, while the projected images are sliced in a rotational sweep mode. To date, the majority of 3‐D graphic engines based on static‐volume displays have not been fully developed. To use an advanced 3‐D graphic engine designed for a swept‐volume display (SVD) with a static‐volume display, the display must emulate the operation of a SVD based on a rotational‐slicing approach. The CSpace® 3‐D display has the capability to render 3‐D images using the rotational‐slicing approach. This paper presents the development of a rotational‐slicing approach designed to emulate the operation of a SVD within the image volume of a static‐volume display. The display software has been modified to divide the 3‐D image into 46 slices, each passing through the image center and rotated at a fixed angle from the previous slice. Reconstructed 3‐D images were demonstrated using a rotational‐slicing approach. Suggestions are provided for future implementations that could aid in the elimination of elongations and distortions, which occur within specified slices.  相似文献   

11.
Abstract— A new bistable‐display driver is presented. The innovation in the developed driver is the addition of a new logical block that calculates the most energy‐efficient driving waveforms. In this paper, the algorithms being applied to the row and column waveforms in order to reduce the power consumption are discussed. Some theoretical as well as experimental results are shown, proving a reduction in the power consumption by about 50%. The proposed algorithms are especially important for battery‐powered applications.  相似文献   

12.
Abstract— Improvements achieved in image resolution and volume in a volumetric display based on the two‐frequency, two‐step upconversion (TFTS) method are presented. Two digital micromirror devices (DMDs) are utilized to generate fast scanning of the image volume at high resolution. Improvements in resolution and image size over previous implementations are achieved by choosing sodium—ytterbium—fluoride for the imaging crystal instead of the conventional ytterbium—lithium—fluoride composition. Experimentally, images at 532 nm were constructed using 45 slices with each slice rendered at 1024 × 768 resolution, resulting in almost 35 million voxels. The resulting system has the potential to achieve a resolution beyond a targeted 800 million voxels without viewpoint obstruction and with expandability to three‐color imagery.  相似文献   

13.
We design a blue phase dual‐view liquid crystal display (BP DVLCD) based on a directional backlight system. Combining the patterned electrodes with the directional backlight system, the cross‐talk ratio is reduced to only 1.17%. Moreover, the resolution and brightness will be tripled by using field‐sequential color display. In the preferred viewing area, the BP DVLCD has a high contrast ratio of ~1700:1.  相似文献   

14.
Abstract— A high‐resolution autostereoscopic 3‐D projection display with a polarization‐control space dividing the iris‐plane liquid‐crystal shutter is proposed. The polarization‐control iris‐plane shutter can control the direction of stereo images without reducing the image quality of the microdis‐play. This autostereoscopic 3‐D projection display is 2‐D/3‐D switchable and has a high resolution and high luminance. In addition, it has no cross‐talk between the left and right viewing zones, a simple structure, and the capability to show multi‐view images.  相似文献   

15.
Dual layered display or also called tensor display that consists of two panels in a stack can present full‐parallax 3D images with high resolution and continuous motion parallax by reconstructing corresponding light ray field within a viewing angle. The depth range where the 3D images can be displayed with reasonable resolution, however, is limited around the panel stack. In this paper, we propose a dual layered display that can present stereoscopic images to multiple viewers located at arbitrary positions in observer space with high resolution and large depth range. Combined with the viewer tracking system, the proposed method provides a practical way to realize high‐resolution large‐depth auto‐stereoscopic 3D display for multiple observers without restriction on the observer position and the head orientation.  相似文献   

16.
Abstract— Optically compensated bend (OCB) mode is a promising technology, due to its wide range of viewing angles without gray‐scale inversion or color shift, fast response, high contrast ratio, and wide temperature range. This paper summarizes the fundamental characteristics of OCB mode and discusses the development of field‐sequential‐color displays and 3‐D displays for future high‐quality display applications.  相似文献   

17.
Abstract— A 42‐in. 2‐D/3‐D switchable display operating in a parallax‐barrier‐type system consisting of liquid‐crystal displays (LCDs) has been developed. The system displays 2‐D images in full resolution, without any degradation to the original 2‐D images, and 3‐D autostereoscopic images with resolutions higher than SVGA with wide viewing zones electrically controlled by the parallax‐barrier system. The system is intended for use in public‐information displays (PIDs), a booming field, and as displays for gaming, medical, and simulation applications.  相似文献   

18.
Abstract— A type of depth illusion created by the use of an aperture grille is reported. When viewing a moving target through multiple slits, a movement with depth is perceived, which was originally reported (see Ref. 11). The binocular delay is considered to cause a virtual disparity between both perspective images with apparent movement. By using an LED display with an aperture grille as a stereoscopic display, perceived distance caused by a binocular delay has been measured. The measured distance is compared with the perceived distance for stereoscopic still images shown on a stereoscopic LED panel. The comparison supported that the binocular delay is converted into binocular disparity. Furthermore, pair‐comparison tests were conducted to investigate depth impressions. It was found that use of an aperture grille improves depth impression for a movie that was taken with a laterally moving camera.  相似文献   

19.
Abstract— A multi‐view depth‐fused 3‐D (DFD) display that provides smooth motion parallax for wide viewing angles is proposed. A conventional DFD display consists of a stack of two transparent emitting screens. It can produce motion parallax for small changes in observation angle, but its viewing zone is rather narrow due to the split images it provides in inclined views. On the other hand, even though multi‐view 3‐D displays have a wide viewing angle, motion parallax in them is discrete, depending on the number of views they show. By applying a stacked structure to multi‐view 3‐D displays, a wide‐viewing‐angle 3‐D display with smooth motion parallax was fabricated. Experimental results confirmed the viewing‐zone connection of DFD displays while the calculated results show the feasibility of stacked multi‐view displays.  相似文献   

20.
Crosstalk is a critical defect affecting image quality in multiview lenticular 3D displays. Existing optimization methods require tedious computations and device‐specific optical measurements, and results are often suboptimal. We propose a new method, on the basis of light field acquisition and optimization, for crosstalk reduction in super multiview displays. Theory and algorithms were developed, and experimental validation results showed superior performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号