共查询到20条相似文献,搜索用时 15 毫秒
1.
Jeong‐Ik Lee Jonghee Lee Joo‐Won Lee Doo‐Hee Cho Jin‐Wook Shin Jun‐Han Han Hye Yong Chu 《ETRI Journal》2012,34(5):690-695
We investigate the light‐emitting performances of blue phosphorescent organic light‐emitting diodes (PHOLEDs) with three different electron injection and transport materials, that is, bathocuproine(2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline) (Bphen), 1,3,5‐tri(m‐pyrid‐3‐yl‐phenyl)benzene (Tm3PyPB), and 2,6‐bis(3‐(carbazol‐9‐yl)phenyl)pyridine (26DCzPPy), which are partially doped with cesium metal. We find that the device characteristics are very dependent on the nature of the introduced electron injection layer (EIL) and electron transporting layer (ETL). When the appropriate EIL and ETL are combined, the peak external quantum efficiency and peak power efficiency improve up to 20.7% and 45.6 lm/W, respectively. Moreover, this blue PHOLED even maintains high external quantum efficiency of 19.6% and 16.9% at a luminance of 1,000 cd/m2 and 10,000 cd/m2, respectively. 相似文献
2.
Highly efficient white phosphorescent organic light‐emitting diodes with a mixed‐host structure are developed and the device characteristics are studied. The introduction of a hole‐transport‐type host (N, N’‐dicarbazolyl‐3‐3‐benzen (mCP)) into an electron‐transport‐type host (m‐bis‐(triphenylsilyl)benzene (UGH3)) as a mixed‐host emissive layer effectively achieves higher current density and lower driving voltage. The peak external quantum and power efficiency with the mixed‐host structure improve up to 18.9% and 40.9 lm/W, respectively. Moreover, this mixed‐host structure device shows over 30% enhanced performance compared with a single‐host structure device at a luminance of 10,000 cd/m2 without any change in the electroluminescence spectra. 相似文献
3.
Jonghee Lee Woo Jin Sung Chul Woong Joo Hyunsu Cho Namsung Cho Ga‐Won Lee Do‐Hoon Hwang Jeong‐Ik Lee 《ETRI Journal》2016,38(2):260-264
We report on highly efficient blue, orange, and white phosphorescent organic light‐emitting diodes consisting only two organic layers. Hole transporting 4, 4,’ 4”‐tris (N‐carbazolyl)triphenylamine (TcTa) and electron transporting 2‐(diphenylphosphoryl) spirofluorene (SPPO1) are used as an emitting host for orange light‐emitting bis(3‐benzothiazol‐2‐yl‐9‐ethyl‐9H‐carbazolato) (acetoacetonate) iridium ((btc)2(acac)Ir) and blue light‐emitting iridium(III)bis(4,6‐difluorophenyl‐pyridinato‐N,C2’) picolinate (FIrpic) dopant, respectively. Combining these two orange and blue light‐emitting layers, we successfully demonstrate highly efficient white PHOLEDs while maintaining Commission internationale de l'éclairage coordinates of (, ). Accordingly, we achieve a maximum external quantum, current, and power efficiencies of 12.9%, 30.3 cd/A, and 30.0 lm/W without out‐coupling enhancement. 相似文献
4.
Soon Ok Jeon Kyoung Soo Yook Chul Woong Joo Jun Yeob Lee 《Advanced functional materials》2009,19(22):3644-3649
Highly efficient deep blue phosphorescent organic light‐emitting diodes are developed using novel phenylcarbazole‐based phosphine oxide host materials (PPO1 and PPO2). A deep blue phosphorescent dopant, tris((3,5‐difluoro‐4‐cyanophenyl)pyridine) iridium, is doped into PPO1 and PPO2 at a doping concentration of 15% and a high quantum efficiency of 18.4% is obtained with color coordinates of (0.14, 0.15). 相似文献
5.
D. Ma J.M. Lupton R. Beavington P.L. Burn I.D.W. Samuel 《Advanced functional materials》2002,12(8):507-511
We demonstrate a novel organic light‐emitting diode (LED) heterolayer structure that contains a conjugated dendrimer as the light‐emitting molecule. The LED was prepared by spin‐coating two dendrimer layers from the same solvent. The device consists of a graded bilayer structure formed from a neat dendrimer film covered with a film consisting of the same dendrimer but doped with the electron‐transporting material 2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD). In this device, the heterojunction interface present in conventional bilayer organic light‐emitting diodes is eliminated, and is replaced by a graded interlayer. By optimizing the concentration of PBD in the dendrimer, a peak electroluminescence (EL) external quantum efficiency of 0.16 % at 600 cd m–2 was obtained. The EL quantum efficiency is significantly enhanced in comparison with devices based on a single layer, a conventional bilayer, and a single‐layer doped with PBD. The EL quantum efficiency is a factor of eight larger than that of a conventional bilayer LED made with the conjugated dendrimer as the emissive layer and poly(methylmethacrylate) (PMMA) doped with PBD as the electron‐transporting layer. The best blended device exhibited only one third of the efficiency of the graded device. The improvement in the operating characteristics of the graded device is attributed to the efficient device structure, in which exciton formation is improved by a graded doping profile of electron‐ and hole‐transporting components. 相似文献
6.
Yi‐Lu Chang Yin Song Zhibin Wang Michael G. Helander Jacky Qiu Lily Chai Zhiwei Liu Gregory D. Scholes Zhenghong Lu 《Advanced functional materials》2013,23(6):705-712
White organic light‐emitting diodes (WOLEDs) are currently under intensive research and development worldwide as a new generation light source to replace problematic incandescent bulbs and fluorescent tubes. One of the major challenges facing WOLEDs has been to achieve high energy efficiency and high color rendering index simultaneously to make the technology competitive against other alternative technologies such as inorganic LEDs. Here, an all‐phosphor, four‐color WOLEDs is presented, employing a novel device design principle utilizing molecular energy transfer or, specifically, triplet exciton conversion within common organic layers in a cascaded emissive zone configuration to achieve exceptional performance: an 24.5% external quantum efficiency (EQE) at 1000 cd/m2 with a color rendering index (CRI) of 81, and an EQE at 5000 cd/m2 of 20.4% with a CRI of 85, using standard phosphors. The EQEs achieved are the highest reported to date among WOLEDs of single or multiple emitters possessing such high CRI, which represents a significant step towards the realization of WOLEDs in solid‐state lighting. 相似文献
7.
8.
Yi‐Lu Chang Brett A. Kamino Zhibin Wang Michael G. Helander Yingli Rao Lily Chai Suning Wang Timothy P. Bender Zheng‐Hong Lu 《Advanced functional materials》2013,23(25):3204-3211
Phosphorescent organic light emitting diodes (PHOLEDs) have undergone tremendous growth over the past two decades. Indeed, they are already prevalent in the form of mobile displays, and are expected to be used in large‐area flat panels recently. To become a viable technology for next generation solid‐state light source however, PHOLEDs face the challenge of achieving concurrently a high color rendering index (CRI) and a high efficiency at high luminance. To improve the CRI of a standard three color white PHOLED, one can use a greenish‐yellow emitter to replace the green emitter such that the gap in emission wavelength between standard green and red emitters is eliminated. However, there are relatively few studies on greenish‐yellow emitters for PHOLEDs, and as a result, the performance of greenish‐yellow PHOLEDs is significantly inferior to those emitting in the three primary colors, which are driven strongly by the display industry. Herein, a newly synthesized greenish‐yellow emitter is synthesized and a novel device concept is introduced featuring interzone exciton transfer to considerably enhance the device efficiency. In particular, high external quantum efficiencies (current efficiencies) of 21.5% (77.4 cd/A) and 20.2% (72.8 cd/A) at a luminance of 1000 cd/m2 and 5000 cd/m2, respectively, have been achieved. These efficiencies are the highest reported to date for greenish‐yellow emitting PHOLEDs. A model for this unique design is also proposed. This design could potentially be applied to enhance the efficiency of even longer wavelength yellow and red emitters, thereby paving the way for a new avenue of tandem white PHOLEDs for solid‐state lighting. 相似文献
9.
Jwo‐Huei Jou Chun‐Yu Hsieh Jing‐Ru Tseng Shiang‐Hau Peng Yung‐Cheng Jou James H. Hong Shih‐Ming Shen Ming‐Chun Tang Pin‐Chu Chen Chun‐Hao Lin 《Advanced functional materials》2013,23(21):2750-2757
In response to the call for a physiologically‐friendly light at night that shows low color temperature, a candle light‐style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light‐style emission is driven by electricity in lieu of the energy‐wasting and greenhouse gas emitting hydrocarbon‐burning candles invented 5000 years ago. This candle light‐style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency. 相似文献
10.
Since the beginning of organic light‐emitting diodes (OLEDs), blue emission has attracted the most attention and many research groups worldwide have worked on the design of materials for stable and highly efficient blue OLEDs. However, almost all the high‐efficiency blue OLEDs using fluorescent materials are multilayer devices, which are constituted of a stack of organic layers to improve the injection, transport, and recombination of charges within the emissive layer. Although the technology has been mastered, it suffers from real complexity and high cost and is time‐consuming. Simplifying the multilayer structure with a single‐layer one, the simplest devices made only of electrodes and the emissive layer have appeared as an appealing strategy for this technology. However, removing the functional organic layers of an OLED stack leads to a dramatic decrease of the performance and achieving high‐efficiency blue single‐layer OLEDs requires intense research especially in terms of materials design. Herein, an exhaustive review of blue emitting fluorophores that have been incorporated in single‐layer OLEDs is reported, and the links between their electronic properties and the device performance are discussed. Thus, a structure/properties/device performance relationship map is drawn, which is of interest for the future design of organic materials. 相似文献
11.
B. Ma P.I. Djurovich S. Garon B. Alleyne M.E. Thompson 《Advanced functional materials》2006,16(18):2438-2446
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula C∧NPt(μ‐pz)2PtC∧N (where C∧N = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V). 相似文献
12.
S.‐C. Lo G.J. Richards J.P.J. Markham E.B. Namdas S. Sharma P.L. Burn I.D.W. Samuel 《Advanced functional materials》2005,15(9):1451-1458
We describe the preparation of a dendrimer that is solution‐processible and contains 2‐ethylhexyloxy surface groups, biphenyl‐based dendrons, and a fac‐tris[2‐(2,4‐difluorophenyl)pyridyl]iridium(III ) core. The homoleptic complex is highly luminescent and the color of emission is similar to the heteroleptic iridium(III ) complex, bis[2‐(2,4‐difluorophenyl)pyridyl]picolinate iridium(III ) (FIrpic). To avoid the change in emission color that would arise from attaching a conjugated dendron to the ligand, the conjugation between the dendron and the ligand is decoupled by separating them with an ethane linkage. Bilayer devices containing a light‐emitting layer comprised of a 30 wt.‐% blend of the dendrimer in 1,3‐bis(N‐carbazolyl)benzene (mCP) and a 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene electron‐transport layer have external quantum and power efficiencies, respectively, of 10.4 % and 11 lm W–1 at 100 cd m–2 and 6.4 V. These efficiencies are higher than those reported for more complex device structures prepared via evaporation that contain FIrpic blended with mCP as the emitting layer, showing the advantage of using a dendritic structure to control processing and intermolecular interactions. The external quantum efficiency of 10.4 % corresponds to the maximum achievable efficiency based on the photoluminescence quantum yield of the emissive film and the standard out‐coupling of light from the device. 相似文献
13.
Gregor Schwartz Sebastian Reineke Thomas Conrad Rosenow Karsten Walzer Karl Leo 《Advanced functional materials》2009,19(9):1319-1333
White organic light‐emitting diodes (OLEDs) are highly efficient large‐area light sources that may play an important role in solving the global energy crisis, while also opening novel design possibilities in general lighting applications. Usually, highly efficient white OLEDs are designed by combining three phosphorescent emitters for the colors blue, green, and red. However, this procedure is not ideal as it is difficult to find sufficiently stable blue phosphorescent emitters. Here, a novel approach to meet the demanding power efficiency and device stability requirements is discussed: a triplet harvesting concept for hybrid white OLED, which combines a blue fluorophor with red and green phosphors and is capable of reaching an internal quantum efficiency of 100% if a suitable blue emitter with high‐lying triplet transition is used is introduced. Additionally, this concept paves the way towards an extremely simple white OLED design, using only a single emitter layer. 相似文献
14.
Recent Progress in High‐Efficiency Blue‐Light‐Emitting Materials for Organic Light‐Emitting Diodes 下载免费PDF全文
Yirang Im Seong Yong Byun Ji Han Kim Dong Ryun Lee Chan Seok Oh Kyoung Soo Yook Jun Yeob Lee 《Advanced functional materials》2017,27(13)
Organic light‐emitting diodes (OLEDs) are increasingly used in displays replacing traditional flat panel displays; e.g., liquid crystal displays. Especially, the paradigm shifts in displays from rigid to flexible types accelerated the market change from liquid crystal displays to OLEDs. However, some critical issues must be resolved for expansion of OLED use, of which blue device performance is one of the most important. Therefore, recent OLED material development has focused on the design, synthesis and application of high‐efficiency and long‐life blue emitters. Well‐known blue fluorescent emitters have been modified to improve their efficiency and lifetime, and blue phosphorescent emitters are being investigated to overcome the lifetime issue. Recently, thermally activated delayed fluorescent emitters have received attention due to the potential of high‐efficiency and long‐living emitters. Therefore, it is timely to review the recent progress and future prospects of high‐efficiency blue emitters. In this feature article, we summarize recent developments in blue fluorescent, phosphorescent and thermally activated delayed fluorescent emitters, and suggest key issues for each emitter and future development strategies. 相似文献
15.
James S. Swensen Evgueni Polikarpov Amber Von Ruden Liang Wang Linda S. Sapochak Asanga B. Padmaperuma 《Advanced functional materials》2011,21(17):3250-3258
Data from a series of phosphorescent blue organic light‐emitting devices with emissive layers consisting of either 4,4′‐bis(N‐carbazolyl)‐2,2′‐biphenyl (CBP):6% bis[(4,6‐difluorophenyl)pyridinato‐N,C2](picolinato)iridium(III) (FIrpic) or bis(9‐carbazolyl)benzene (mCP):6% FIrpic show that the triplet energy of the hole and electron transport layers can have a larger influence on the external quantum efficiency of an operating device than the triplet energy of the host material. A maximum external quantum efficiency of 14% was obtained for CBP:6% FIrpic devices which is nearly double all other published CBP:6% FIrpic results. A new host material, 4‐(diphenylphosphoryl)‐N,N‐di‐p‐tolylaniline (DHM‐A2), which has a triplet energy lower than that of FIrpic is also reported. Devices fabricated using DHM‐A2 show improved performance (lower drive voltage and higher external quantum efficiency) over devices using 4‐(diphenylphosphoryl)‐N,N‐diphenylaniline (HM‐A1), a high performance ambipolar DHM‐A2 analogue with a triplet energy greater than FIrpic. Nearly 18% external quantum efficiency was obtained for the DHM‐A2:5% FIrpic devices. The results suggest modified design rules for the development of high performance host materials: more focus can be placed on molecular structures that provide good charge transport (ambipolarity for charge balance) and good molecular stability (for long lifetimes) rather than first focusing on the triplet energy of the host material. 相似文献
16.
17.
Sei‐Yong Kim Won‐Ik Jeong Christian Mayr Young‐Seo Park Kwon‐Hyeon Kim Jeong‐Hwan Lee Chang‐Ki Moon Wolfgang Brütting Jang‐Joo Kim 《Advanced functional materials》2013,23(31):3896-3900
High‐efficiency phosphorescent organic light‐emitting diodes (OLEDs) doped with Ir(ppy)2(acac) [bis(2‐phenylpyridine)iridium(III)‐acetylacetonate] in an exciplex forming co‐host have been optically analyzed. This emitter has a preferred orientation with the horizontal to vertical dipole ratio of 0.77:0.23 as compared to 0.67:0.33 in the isotropic case. Theoretical analysis based on the orientation factor (Θ, the ratio of the horizontal dipoles to total dipoles) and the photoluminescence quantum yield (qPL) of the emitter predicts that the maximum external quantum efficiency (EQE) of the OLEDs with this emitter is about 30%, which matches very well with the experimental data, indicating that the electrical loss of the OLEDs is negligible and the device structure can be utilized as a platform to demonstrate the validity of optical modeling. Based on the results, the maximum EQE achievable for a certain emitting dye in a host can be predicted by just measuring qPL and Θ in a neat film on glass without the need to fabricate devices, which offers a universal plot of the maximum EQE as a function of qPL and Θ. 相似文献
18.
Nanodot‐Enhanced High‐Efficiency Pure‐White Organic Light‐Emitting Diodes with Mixed‐Host Structures
J.‐H. Jou C.‐C. Chen Y.‐C. Chung M.‐F. Hsu C.‐H. Wu S.‐M. Shen M.‐H. Wu W.‐B. Wang Y.‐C. Tsai C.‐P. Wang J.‐J. Shyue 《Advanced functional materials》2008,18(1):121-126
A relatively high‐efficiency, fluorescent pure‐white organic light‐emitting diode was fabricated using a polysilicic acid (PSA) nanodot‐embedded polymeric hole‐transporting layer (HTL). The diode employed a mixed host in the single emissive layer, which comprised 0.5 wt % yellow 5,6,11,12‐tetra‐phenylnaphthacene doped in the mixed host of 50 % 2‐(N,N‐diphenyl‐amino)‐6‐[4‐(N,N‐diphenylamino)styryl]naphthalene and 50 % N,N′‐bis‐(1‐naphthyl)‐N,N′‐diphenyl‐1,10‐biphenyl‐4‐4′‐diamine. By incorporating 7 wt % 3 nm PSA nanodot into the HTL of poly(3,4‐ethylene‐dioxythiophene)‐poly‐(styrenesulfonate), the efficiency at 100 cd m–2 was increased from 13.5 lm W–1 (14.7 cd A–1; EQE: 7.2 %) to 17.1 lm W–1 (17.6 cd A–1; EQE: 8.3 %). The marked efficiency improvement may be attributed to the introduction of the PSA nanodot, leading to a better carrier‐injection‐balance. 相似文献
19.
Study of Configuration Differentia and Highly Efficient,Deep‐Blue,Organic Light‐Emitting Diodes Based on Novel Naphtho[1,2‐d]imidazole Derivatives 下载免费PDF全文
Ming Liu Xiang‐Long Li Dong Cheng Chen Zhongzhi Xie Xinyi Cai Gaozhan Xie Kunkun Liu Jianxin Tang Shi‐Jian Su Yong Cao 《Advanced functional materials》2015,25(32):5190-5198
Two novel naphtho[1,2‐d]imidazole derivatives are developed as deep‐blue, light‐emitting materials for organic light‐emitting diodes (OLEDs). The 1H‐naphtho[1,2‐d]imidazole based compounds exhibit a significantly superior performance than the 3H‐naphtho[1,2‐d]imidazole analogues in the single‐layer devices. This is because they have a much higher capacity for direct electron‐injection from the cathode compared to their isomeric counterparts resulting in a ground‐breaking EQE (external quantum efficiency) of 4.37% and a low turn‐on voltage of 2.7 V, and this is hitherto the best performance for a non‐doped single‐layer fluorescent OLED. Multi‐layer devices consisting of both hole‐ and electron‐transporting layers, result in identically excellent performances with EQE values of 4.12–6.08% and deep‐blue light emission (Commission Internationale de l'Eclairage (CIE) y values of 0.077–0.115) is obtained for both isomers due to the improved carrier injection and confinement within the emissive layer. In addition, they showed a significantly better blue‐color purity than analogous molecules based on benzimidazole or phenanthro[9,10‐d]imidazole segments. 相似文献
20.
Efficiency Roll‐Off in Blue Emitting Phosphorescent Organic Light Emitting Diodes with Carbazole Host Materials 下载免费PDF全文
Xiangyu Fu Wei Wei Rui Liu Yong Zhang Viktor Balema Bryce Nelson Franky So 《Advanced functional materials》2016,26(9):1463-1469
The efficiency roll‐off in blue phosphorescent organic light emitting diodes (OLEDs) using different carbazole compounds as the host is systematically studied. While there is no significant difference in device efficiency, OLEDs using ter‐carbazole as the host show a reduction in efficiency roll‐off at high luminance. Data from transient photoluminescence and electroluminescence measurements show that the lower triplet–triplet annihilation (TTA) and triplet–polaron quenching (TPQ) rates in devices with the ter‐carbazole host compared with other carbazole hosts are the reasons for this reduced efficiency roll‐off. It is also found that the host materials with low glass transition temperatures are more susceptible to the efficiency roll‐off problem. 相似文献