共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Nitin P. Padture 《Advanced materials (Deerfield Beach, Fla.)》2009,21(17):1767-1770
Polycrystalline ceramic/single‐walled carbon nanotube (SWNT) composites possess unique grain boundaries, containing 1D tortuous SWNTs bundles that form 2D tangled embedded nets. This unprecedented grain‐boundary structure allows tailoring of multifunctional ceramic/SWNTs composites with unique combinations of desirable mechanical (toughness, strength, creep) and transport (electrical, thermal) properties. A brief discussion and analysis of recent developments in these composites are presented. 相似文献
9.
10.
11.
12.
13.
14.
15.
Thread‐Like CMOS Logic Circuits Enabled by Reel‐Processed Single‐Walled Carbon Nanotube Transistors via Selective Doping 下载免费PDF全文
Jae Sang Heo Taehoon Kim Seok‐Gyu Ban Daesik Kim Jun Ho Lee Jesse S. Jur Myung‐Gil Kim Yong‐Hoon Kim Yongtaek Hong Sung Kyu Park 《Advanced materials (Deerfield Beach, Fla.)》2017,29(31)
The realization of large‐area electronics with full integration of 1D thread‐like devices may open up a new era for ultraflexible and human adaptable electronic systems because of their potential advantages in demonstrating scalable complex circuitry by a simply integrated weaving technology. More importantly, the thread‐like fiber electronic devices can be achieved using a simple reel‐to‐reel process, which is strongly required for low‐cost and scalable manufacturing technology. Here, high‐performance reel‐processed complementary metal‐oxide‐semiconductor (CMOS) integrated circuits are reported on 1D fiber substrates by using selectively chemical‐doped single‐walled carbon nanotube (SWCNT) transistors. With the introduction of selective n‐type doping and a nonrelief photochemical patterning process, p‐ and n‐type SWCNT transistors are successfully implemented on cylindrical fiber substrates under air ambient, enabling high‐performance and reliable thread‐like CMOS inverter circuits. In addition, it is noteworthy that the optimized reel‐coating process can facilitate improvement in the arrangement of SWCNTs, building uniformly well‐aligned SWCNT channels, and enhancement of the electrical performance of the devices. The p‐ and n‐type SWCNT transistors exhibit field‐effect mobility of 4.03 and 2.15 cm2 V?1 s?1, respectively, with relatively narrow distribution. Moreover, the SWCNT CMOS inverter circuits demonstrate a gain of 6.76 and relatively good dynamic operation at a supply voltage of 5.0 V. 相似文献
16.
17.
18.
In this review article, we explore covalent chemical strategies for the functionalization of carbon‐nanotube surfaces. In recent years, nanotubes have been treated as chemical reagents (be it inorganic or organic) in their own right. Indeed, from their inherent structure, one can view nanotubes as sterically bulky, π‐conjugated ligands, or conversely as electron‐deficient alkenes. Hence, herein we seek to understand, from a structural perspective, the breadth and types of reactions single‐walled nanotubes (SWNTs) can undergo in solution phase, not only at the ends and defect sites but also along the sidewalls. Controllable chemical functionalization suggests that the unique electronic and mechanical properties of SWNTs can be tailored in a determinable manner. Moreover, prevailing themes in nanotube functionalization have been involved with dissolution of tubes. 相似文献
19.