首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceramics of the series (0.97-x)Bi1/2Na1/2TiO3-xBi1/2K1/2TiO3-0.03NaNbO3 (x = 0, 0.02, 0.06, 0.10, 0.16, 0.20, 0.30) were prepared by the conventional mixed oxide method. Influence of Bi1/2K1/2TiO3 content on the crystal structure, microstructure, dielectric and piezoelectric properties were studied. All compositions showed single perovskite phase and the morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase existed at the point of x = 0.16. Temperature dependences of permittivity and dissipation factor of unpoled samples revealed that permittivity increased with Bi1/2K1/2TiO3 content and it reached maximum value near the MPB. At the same time, the peak value of dissipation factor increased with the addition of Bi1/2K1/2TiO3. All the samples experienced two phase transitions: from ferroelectric to antiferroelectric at the first transition temperature (Td) and from antiferroelectric to paraelectric at the temperature (Tm) corresponding to maximum value of permittivity. The phase transition from ferroelectric to antiferroelectric had relaxor characteristic and Td shifted to lower temperature while increasing Bi1/2K1/2TiO3 content. The best piezoelectric properties were obtained in 0.81Bi1/2Na1/2TiO3-0.16Bi1/2K1/2TiO3-0.03NaNbO3 ceramic with a piezoelectric constant (d33) of 146pC/N, planar electromechanical coupling factor (kp) of 30.3% and thickness electromechanical coupling factor (kt) of 53.2%. Abnormal piezoelectric properties were observed in the sample (x = 0.20), which was attributed to the co-existence of ferroelectric and antiferroelectric phases in it.  相似文献   

2.
Lead-free piezoelectric ceramics, (Bi1/2Na1/2)1 − x(Bi1/2K1/2)xTiO3-0.03(Na0.5K0.5)NbO3 (x = 0.10-0.40) were synthesized by conventional solid-state sintering. A morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases was confirmed. Two dielectric anomalies can be observed, showing diffused phase transition behavior. There is no shift of the dielectric maximum temperature with frequency due to the contribution of space charge at high temperatures, similar to pure (Bi1/2Na1/2)TiO3. The materials near MPB show a strong compositional dependence with the optimal properties of a d33 of 167 pC/N, a kp of 35.5%, a Pr of 27.6 μC/cm2 and a Ec of 27.9 kV/cm, suitable for future application.  相似文献   

3.
The near morphotropic phase boundary (MPB) compositions of lead-free piezoelectric ceramics based on sodium bismuth titanate (Na0.50Bi0.50TiO3: NBT) and barium titanate (BaTiO3: BT) were carefully investigated by conventional high temperature mixed-oxide method. All the ceramics exhibit single phase rhombohedral symmetry. The frequency (100 Hz to 1 MHz) and temperature (Room temperature–500 °C) dependence of impedance spectroscopy of (1 − x)Na0.50Bi0.50TiO3–xBaTiO3 (x = 0.0, 0.06, 0.07 and 0.08) ceramics were investigated by impedance analyzer. The frequency explicit plots of Z″ versus frequency at various temperatures show peaks in the higher temperature range (>400 °C). The compounds show dielectric relaxation, which is found to be of non-Debye type and the relaxation frequency shifted to higher side with increase in temperature. The activation energy values obtained for different BT content suggest that the electrical conduction in NBT is mainly due to the mobility of the ionized oxygen defects.  相似文献   

4.
In this work, the piezoelectric ceramic system of Pb[(Zr1−xTix)0.74(Mg1/3Nb2/3)0.20(Zn1/3Nb2/3)0.06]O3, 0.47≤x≤0.57, with composition close to the morphotropic phase boundary, was studied. From the results of X-ray diffraction and piezoelectric measurement, ceramics near x=0.51 were found at the morphotropic phase boundary (MPB) between the tetragonal and pseudocubic perovskite. The planar coupling factor (kp=0.72) is high at compositions near the MPB, but the mechanical quality factor (Qm=75) is low. The calculation of the diffuseness of phase transition shows that the region of phase coexistence of this system is broader than that of the ternary system.  相似文献   

5.
Lead-free piezoelectric ceramics with compositions around the morphotropic phase boundary (MPB) x(Na0.5Bi0.5)TiO 3-y(K0.5Bi0.5)TiO3-zBaTiO 3 [x + y + z = 1; y:z = 2:1] were synthesized using conventional, solid-state processing. Dielectric maximum temperatures of 280degC and 262degC were found for tetragonal 0.79(Na0.5Bi0.5)TiO3-0.14(K0.5 Bi0.5)TiO3-0.07BaTiO$ d3 (BNBK79) and MPB composition 0.88(Na0.5Bi0.5)TiO3-0.08(K 0.5Bi0.5)TiO3-0.04BaTiO$ d3 (BNBK88), with depolarization temperatures of 224degC and 162degC, respectively. Piezoelectric coefficients d33 were found to be 135 pC/N and 170 pC/N for BNBK79 and BNBK88, and the piezoelectric d31 was determined to be -37 pC/N and -51 pC/N, demonstrating strong anisotropy. Coercive field values were found to be 37 kV/cm and 29 kV/cm for BNBK79 and BNBK88, respectively. The remanent polarization of BNBK88 (~40 muC/cm2) was larger than that of BNBK79 (~29 muC/cm2). The piezoelectric, electromechanical, and high-field strain behaviors also were studied as a function of temperature and discussed  相似文献   

6.
(K0.5Bi0.5)TiO3-BiScO3-PbTiO3 ceramics were synthesized by conventional solid-state method. A morphotropic phase boundary (MPB) was confirmed with the aid of structural analysis. Two dielectric anomalous peaks were observed, the one around dielectric maximum temperature (Tm) due to phase transformation from ferroelectric to paraelectric while the second one could be ascribed to space charges. Furthermore, the existence of space charges also resulted in the independence of Tm with frequency at low lead composition. A new high temperature piezoelectric ceramic, 0.30(K0.5Bi0.5)TiO3-0.30BiScO3-0.40PbTiO3 close to MPB exhibited excellent electrical properties with Tm of 384 °C, d33 of 247 pC/N, kp of 38.9%, Pr of 19.41 μC/cm2, and Ec of 2.25 kV/mm, indicative of a candidate for high temperature application.  相似文献   

7.
To develop new (Bi1/2Na1/2)TiO3-based ceramics with excellent piezoelectric properties, the similarities and the differences between PZT and (Bi1/2Na1/2)TiO3 ceramics were analysed. Based on the analysis, a new (Bi1/2Na1/2)TiO3-based piezoelectric ceramic of B-site substitution of complex ions (Mg1/3Nb2/3)4+ for Ti4+ was prepared by a conventional ceramic technique, and effect of complex ions (Mg1/3Nb2/3)4+ addition on the microstructure, dielectric and piezoelectric properties was investigated. The results show that all compositions are mono-perovskite phase and the grain size increases with increasing content of (Mg1/3Nb2/3)4+. The piezoelectric constant, d 33, first increases and then decreases, and electromechanical coupling factor, k p, varies insignificantly with increasing content of (Mg1/3Nb2/3)4+.  相似文献   

8.
It has been reported that ferroelectric and piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) thin films, with compositions close to the morphotropic phase boundary (MPB), show lower values than those reported for bulk ceramics with the same composition, which has been attributed to a reduction of the remnant polarization caused by the small size of the grains in the films. An alternative has been proposed to take full advantage of the excellent piezoelectric properties of polycrystalline PMNT in thin film form: a multilayer configuration that uses ferroelectric layers with large remnant polarization, in this case PbTiO3, to generate an internal electric bias within the PMNT layers and, thus, anchor an induced polarization on them, resulting in a consequent large piezoelectric behavior. The detailed study of the properties of these multilayer composite films reveals the complex correlations that arise in these heterostructures, which are key for the design of optimized piezoelectric films based on MPB PMNT.  相似文献   

9.
Compositions in (Na1/2Bi1/2)TiO3 based ternary system, (0.97 – x) (Na1/2Bi1/2)TiO3-0.03NaNbO3-xBaTiO3 (x = 0, 0.01, 0.02, 0.04, 0.05, 0.06, 0.08) are synthesized using conventional solid state reaction method. Influence of BaTiO3 on crystal structure, dielectric and piezoelectric properties are investigated. All compositions can form single perovskite phase. Powder x-ray diffraction patterns can be indexed assuming a pseudo-cubic structure. Lattice constant increases with the increase of BaTiO3 concentration. Rhombohedral distortion is observed in poled samples with BaTiO3 concentration up to 6 mol%. Temperature dependence of dielectric constant and dissipation factor measurement reveals that all compositions experience two phase transitions: from ferroelectric to antiferroelectric and from antiferroelectric to paraelectric. Both transition temperatures, T c and T f, are lowered due to introduction of BaTiO3. Ferroelectric to antiferroelectric phase transition has relaxor characteristics. Piezoelectric properties have relatively higher value around 1 mol% to 4 mol% BaTiO3. In ceramics with x = 0.02, thickness electromechanical coupling factor (k t) of 0.51 and piezoelectric charge constant (d 33) of 110 × 10–12 C/N are obtained. Addition of small amount of BaTiO3 (x = 0.01, 0.02) improves piezoelectric properties compared to NBT-NN binary system, while T f remains above 140°C, higher than that of NBT-BT binary system composition with similar piezoelectric properties. This is in favor of the possible application of them as lead-free piezoelectric ceramics.  相似文献   

10.
Na1/2Bi1/2TiO3-BaTiO3系陶瓷压电性及弛豫相变研究   总被引:29,自引:1,他引:29  
系统研究了(1-x)Na1/2Bi1/2TiO3-xBaTiO3(x=0.02、0.04、0.06、0.08、0.10)无铅压电陶瓷系统的相界、材料压电性能、驰豫特性及相变。这个系统的陶瓷材料具有Kt/Kp较大,频率常数比较高等特点,X-ray衍射结构分析发现此系统的相界在0.04〈x〈0.06之间;材料的一些主要性能在相界附近达到极值。利用介电系数-温度曲线,并结合热激电流曲线对此系统的驰豫性进  相似文献   

11.
The structure, ferroelectric characteristics and piezoelectric properties of (Na0.5Bi0.5)1 − xBaxTiO3 (x = 0.04, 0.06, 0.10) ceramics prepared by conventional solid state method were investigated. The influences of poling condition and sintering temperature on the piezoelectric properties of the ceramics were examined. The piezoelectric properties of the ceramics highly depend on poling field and temperature, while no remarkable effect of poling time on the piezoelectric properties was found in the range of 5-25 min. Compared with (Na0.5Bi0.5)0.96Ba0.04TiO3 and (Na0.5Bi0.5)0.90Ba0.10TiO3, the piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 are more sensitive to poling temperature due to the relatively low depolarization temperature. Moderate increase of sintering temperature improved the poling process and piezoelectric properties due to the development of microstructural densification and crystal structure. With respect to sintering behavior and piezoelectric properties, a sintering temperature range of 1130-1160 °C was ascertained for (Na0.5Bi0.5)0.90Ba0.10TiO3.  相似文献   

12.
Hua  Qian  Ren  Pengrong  Wang  Jiale  Wang  Yike  Liu  Laijun  Lalitha  K. V.  Hua  Dengxin  Zhao  Gaoyang 《Journal of Materials Science》2021,56(33):18430-18439

Quenching from sintering temperature enhances the depolarization temperature (Td) in Na1/2Bi1/2TiO3-based ceramics without significant deterioration of piezoelectric properties (d33). In this work, quenching effects in an ergodic relaxor 0.97(0.94Na0.5Bi0.5TiO3–0.06BaTiO3)–0.03AgNbO3 (NBT–6BT–3AN) were investigated based on structure, ferroelectric, and dielectric properties. The ergodicity to nonergodicity transition was obtained by quenching NBT–6BT–3AN above 1000 °C. The temperature stability of the quenching-induced nonergodicity was examined by annealing the quenched sample at 300 °C and 600 °C. The effect of oxygen vacancy on ergodicity to nonergodicity transition was investigated by comparing ferroelectric and electrostrain responses of the quenched and nitrogen-atmosphere-annealed samples. The influence of quenching on the structure including the average crystal structure, phase fraction and lattice distortion and the local structure including bond lengths and ordering of ions was analyzed. The ergodicity to nonergodicity transition upon quenching is ascribed to the contribution of the off-centered Bi3+ ions and ordered local structure.

Graphical abstract
  相似文献   

13.
Aurivillius-type ceramics, Sr0.6−x(LiCe)x/2.5(BiNa)0.2Bi2Nb2O9(SLCBNBNO) with the charge neutrality, were synthesized by using conventional solid-state processing. Phase analysis was performed by X-ray diffraction analyses (XRD) and Raman spectroscopy. Microstructural morphology was assessed by the scanning electron microscopy (SEM). Structural, dielectric, piezoelectric, ferroelectric, and electromechanical properties of the SLCBNBNO ceramics were investigated. Piezoelectric properties were significantly enhanced compared to Sr0.6(BiNa)0.2Bi2Nb2O9 (SBNBN) ceramic and the maximum of piezoelectric coefficient d33 of the SBNBN-LC6 ceramic was 32 pC/N with higher Curie temperature (Tc ∼590 °C). In addition, mechanisms for the piezoelectric properties enhanced of the SBNBN-based ceramics were discussed.  相似文献   

14.
New piezoelectric ceramics, 0.15BiScO3-0.85(Pb1 − 3/ 2Bix)(Ti0.98Mn0.02)O3 (= 0.04~0.10), were prepared by using conventional solid phase processing. The results of X-ray diffraction (XRD) show that the ceramics have a single phase tetragonal perovskite structure. The ceramics, poled by normal poling process, have piezoelectric coefficient d33, planar electromechanical coupling factor kp and thickness electromechanical coupling factor kt of 50~60 pC/N, ~ 11% and ~ 30%, respectively. An extremely high mechanical quality factor Qm of 1540 was obtained at the composition = 0.08. The Curie temperature (TC) is in the range of 520-550 °C, higher than 490 °C of pure PbTiO3. The combination of good piezoelectric properties and high TC makes these ceramics suitable for elevated temperature piezoelectric devices.  相似文献   

15.
Different cations doped lead-free piezoelectric (Bi1/2Na1/2)TiO3 ceramics with the general formula Na0.4995Bi0.4995Ba0.001Ti0.998M0.002O3 (M = Nb, Ta, and Sb) were fabricated. The effects of processing parameters and doping on phase content, microstructure, dielectric and piezoelectric properties of the materials were discussed. Experimental results show that Nb doped (Bi1/2Na1/2)TiO3 exhibits superior polarization performance over the existing lead-free ceramics with a d33 value of 122 pC/N obtained when poled at 60 kV/cm at room temperature. The best piezoelectric properties were achieved in (Bi1/2Na1/2)TiO3 doped with Ta having a measured d33 value of 164 pC/N for samples poled at 100 °C under the applied field of 50 kV/cm.  相似文献   

16.
To improve both the temperature stability and the mechanical quality factor of (K0.5Na0.5)0.94Li0.06NbO3 (KNLN6) ceramics, dense (K4CuNb8O23, Bi2O3)-modified KNLN6 lead-free ceramics were prepared. Results showed that the (K4CuNb8O23, Bi2O3)-modified ceramics exhibited a flat, temperature-stable behavior over the range of 20–120 °C. K4CuNb8O23 (KCN) and Bi2O3-codoping changed the KNLN6 to “hard” ceramics with a significant improvement of mechanical quality factor, Q m, from 82 to 756. Meanwhile, the piezoelectric constant, d 33, and the planar electromechanical coefficient, k p, still maintained relatively high levels (d 33 ~118 pC/N, k p ~35.6%). These results indicate that the modified KNLN6 ceramics are promising lead-free piezoelectric candidates for practical applications.  相似文献   

17.
High-quality and large-size ferroelectric single crystal of 1 at.% Mn-doped Na1/2Bi1/2TiO3 has been successfully grown by top-seeded solution growth technique. X-ray fluorescence analysis determines the actual Mn concentration of 0.24 at.% in as-grown Mn-doped Na1/2Bi1/2TiO3 crystal, indicating a very low value of Mn ions diffusion into crystal lattice. Temperature dependence of dielectric constant at different frequencies shows that the dielectric relaxor behavior becomes more distinct after Mn-doping. Moreover, the domain size of Mn-doped Na1/2Bi1/2TiO3 crystal becomes smaller than that of pure Na1/2Bi1/2TiO3 crystal. At room temperature, the [001]-oriented Mn-doped Na1/2Bi1/2TiO3 crystal shows enhanced dielectric, piezoelectric and ferroelectric properties compared with that of pure Na1/2Bi1/2TiO3 crystal. It is clearly demonstrated that Mn-doping is a very effective tool to improve electrical performance of Na1/2Bi1/2TiO3 based single crystals.  相似文献   

18.
铅基复合钙钛矿铁电材料广泛应用于机电传感器、致动器和换能器。二元铁电固溶体Pb(Ni1/3Nb2/3)O3- PbTiO3(PNN-PT)由于其在准同型相界(MPB)区域具有优异的压电、介电性能而备受关注。然而较大的介电损耗和较低的居里温度限制了其在高温高功率器件方面的应用。本研究通过引入Pb(In1/2Nb1/2)O3 (PIN)作为第三组元改善PNN-PT的电学性能, 提高其居里温度; 通过两步法合成了MPB区域的三元铁电陶瓷Pb(In1/2Nb1/2)O3- Pb(Ni1/3Nb2/3)O3-PbTiO3 (PIN-PNN-PT), 研究了其结构、介电、铁电和压电性能。制备的所有组分陶瓷具有纯的钙钛矿结构。随着PT含量的增加, 陶瓷结构从三方相转变为四方相。通过XRD分析得到了室温下PIN-PNN-PT体系的MPB相图。体系的居里温度由于PIN的加入得到了很大的提高, 更重要的是PIN的引入降低了PNN-PT体系的介电损耗和电导。MPB处的组分展现出了优异的电学性能, 室温下, 性能最优组分为0.30PIN-0.33PNN-0.37PT: d33=417 pC/N, TC=200 ℃, ε′= 3206, tanδ=0.033, Pr=33.5 μC/cm2, EC=14.1 kV/cm。引入PNN-PT的PIN第三组元使得体系的居里温度和压电性得到提高的同时降低了的介电损耗和电导率, 因此, PIN-PNN-PT三元铁电陶瓷在高温高功率换能器等方面具备一定的应用潜力。  相似文献   

19.
Mengjia Wu 《Materials Letters》2010,64(10):1157-1159
Plate-like templates for the development of grain oriented microstructures are required for lead-free piezoelectric ceramics with directionality of properties. Plate-like Na0.5Bi0.5TiO3 templates with perovskite structure were synthesized by the Topochemical Microcrystal Conversion (TMC) method from bismuth layer-structured ferroelectric compound Bi4Ti3O12. The TMC-derived NBT templates, with diameters of 5-15 µm and an average thickness of 0.7 µm, maintained the morphology of Bi4Ti3O12 precursors, showing a high degree of preferred pseudocubic < 001> orientation. The Na0.5Bi0.5TiO3 particles prepared could serve as good templates for the preparation of grain oriented lead-free NBT-based piezoelectric ceramics.  相似文献   

20.
The solid solutions in the 0.36BiScO3-0.64(1 − x)PbTiO3-0.64xPb(Sc1/2Nb1/2)O3 system were fabricated using wolframite precursor method. A coexistence of rhombohedral and tetragonal phases is formed in the studied compositions range and a wide morphotropic phase boundary region is confirmed by X-ray diffraction results. After the addition of Pb(Sc1/2Nb1/2)O3, a relaxor behavior is induced and the dielectric maximum temperature shifts to higher temperatures with increasing measuring frequencies. The presence of relaxor can be ascribed to the formation of polar nanoregions. The studied composition exhibits the optimal ferroelectric and piezoelectric properties with d33 of 453 pC/N and Kp of 0.58, Tm of 405 °C for x = 0.10 composition, which is suitable for future high-temperature piezoelectric application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号