共查询到20条相似文献,搜索用时 15 毫秒
1.
《应用陶瓷进展》2013,112(4):213-218
Abstract Abstract This paper reports the effect of silica fume (SF), nanosilica (NS) and superplasticiser (SP) addition on the rheological behaviour of Portland cement pastes with different amounts of SF (0-10%), NS (1%) and SP (0-0·4%) and water to binder (W/B) ratio of 0·4. A rheometer with concentric cylinders geometry was used and the maximum shear rate of 100?s?1 was applied. SP decreased the hysteresis area, while SF and NS increased it. Samples with NS showed high slopes in descending curves, while samples with SF and high dosages of SP showed lower values. In both cases, the Bingham model resulted in negative values for the yield stress, so that the Herschel-Bulkley model was used instead. The spread values variation on flow table did not follow a linear regression model. For this investigation, commercially available SF and NS were used. 相似文献
2.
Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete 总被引:2,自引:0,他引:2
Thanongsak Nochaiya 《Fuel》2010,89(3):768-774
This paper reports the normal consistency, setting time, workability and compressive strength results of Portland cement-fly ash-silica fume systems. The results show that water requirement for normal consistency was found to increase with increasing SF content while a decrease in initial setting time was found. Workability, measured in term of slump, was found to decrease with silica fume content (compared to blends without silica fume). However, it must be noted that despite the reduction in the slump values, the workability of Portland cement-fly ash-silica fume concrete in most cases remained higher than that of the Portland cement control concrete. Furthermore, the utilization of silica fume with fly ash was found to increase the compressive strength of concrete at early ages (pre 28 days) up to 145% with the highest strength obtained when silica fume was used at 10 wt%. Moreover, scanning electron micrographs show that utilization of fly ash with silica fume resulted in a much denser microstructure, thereby leading to an increase in compressive strength. 相似文献
3.
The influence of a relatively new high-performance cement replacement material—vitreous calcium aluminosilicate (VCAS)—on the hydration behavior in cementitious systems, and its comparison to silica fume (SF) are presented in this paper. VCAS is shown to have no cementitious qualities, but exhibits significant pozzolanicity, which has been quantified using strength activity index and electrical conductivity change. VCAS modified pastes are found to consume more water during hydration than the corresponding SF modified pastes. Based on a normalized calcium hydroxide content defined in this paper, it is seen that the pozzolanic reaction of VCAS does not happen until 7 days while that of SF occurs as early as the first day. The degrees of hydration of the modified pastes are predicted using a model that employs the change in non-evaporable water resulting from the use of these replacement materials. VCAS modified pastes show lower later age porosities as compared to the plain and SF modified pastes. However, at equal degrees of hydration, SF modified pastes show the lowest porosity. 相似文献
4.
This paper discussed the flexural and the compressive strengths of polyacrylic ester (PAE) emulsion and silica fume (SF)-modified mortar. The chloride ion permeability in cement mortar and the interfacial microhardness between aggregates and matrix were measured. The chemical reactions between polymer and cement-hydrated product were investigated by the infrared spectral technology. The results show that the decrease of porosity and increase of density of cement mortars can be achieved by the pozzolanic effect of SF, the water-reducing and -filling effect of polymer. Lower porosity and higher density can give cement mortars such properties as higher flexural and compressive strength, higher microhardness value in interfacial zone and lower effective diffusion coefficient of chloride ion in matrix. 相似文献
5.
Effects of densified silica fume on microstructure and compressive strength of blended cement pastes 总被引:2,自引:0,他引:2
Ji Yajun 《Cement and Concrete Research》2003,33(10):1543-1548
Some experimental investigations on the microstructure and compressive strength development of silica fume blended cement pastes are presented in this paper. The silica fume replacement varies from 0% to 20% by weight and the water/binder ratio (w/b) is 0.4. The pore structure by mercury intrusion porosimetry (MIP), the micromorphology by scanning electron microscopy (SEM) and the compressive strength at 3, 7, 14, 28, 56 and 90 days have been studied. The test results indicate that the improvements on both microstructure and mechanical properties of hardened cement pastes by silica fume replacement are not effective due to the agglomeration of silica fume particles. The unreacted silica fume remained in cement pastes, the threshold diameter was not reduced and the increase in compressive strength was insignificant up to 28 days. It is suggested that the proper measures should be taken to disperse silica fume agglomeration to make it more effective on improving the properties of materials. 相似文献
6.
The application of condensed silica fume as a mineral admixture in concrete is almost a routine one nowadays for the production of tailor-made high-performance concretes. Abrams' Law, which was originally formulated for conventional concrete containing cement as the only cementitious material, is not directly applicable to these new-generation concretes. In the present paper, modified relationships have been proposed to evaluate the strength of silica fume concrete. An extensive experimentation was carried out to determine the isolated effect of silica fume on concrete, and, analyzing the 28-day strength results of 32 concrete mixes performed over a wide range of water-binder ratios and silica fume replacement percentages, simplified relationships have been proposed. These simplified models might serve as useful guides for proportioning concrete mixes incorporating silica fume. 相似文献
7.
The use of silica fume (SF) has been instrumental in the development and utilization of high-strength and high-performance concrete. In the interests of economics, questions have been raised regarding the possible use and effectiveness of “lower grade” SFs with SiO2 contents less than 85%. Such materials do not meet current CSA and ASTM standards for SF. In this study, the performance of two SFs from the same U.S. plant but with different silica contents (68% and 88% SiO2) were compared by examining the effect of the materials on the expansion due to alkali-silica reaction (ASR) and the composition of the pore solution. The mixtures tested with these procedures included 0%, 4%, 8%, and 12% SF replacement by mass of cement. Results show that the SF with lower than standard silica contents cannot control ASR at the levels of replacement examined in this program. 相似文献
8.
The present paper is directed towards developing a better understanding on the isolated contribution of silica fume on the tensile strengths of high-performance concrete (HPC). Extensive experimentation was carried out over water-binder ratios ranging from 0.26 to 0.42 and silica fume-binder ratios from 0.0 to 0.3. For all the mixes, compressive, flexural and split tensile strengths were determined at 28 days. The compressive, as well as the tensile, strengths increased with silica fume incorporation, and the results indicate that the optimum replacement percentage is not a constant one but depends on the water-cementitious material (w/cm) ratio of the mix. Compared with split tensile strengths, flexural strengths have exhibited greater improvements. Based on the test results, relationships between the 28-day flexural and split tensile strengths with the compressive strength of silica fume concrete have been developed using statistical methods. 相似文献
9.
In this study, high-calcium fly ash (HCFA) and silica fume (SF) were used as mineral admixtures. The effect of these admixtures on the microstructure of cement paste was investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The reaction of HCFA and SF with portlandite, which occurs in Portland cement (PC), forms a new calcium-silicate-hydrate (C-S-H) gel. 相似文献
10.
The present paper deals with a mathematical model developed using statistical methods to predict the 28-day compressive strength of silica fume concrete with water-to-cementitious material (w/cm) ratios ranging from 0.3 to 0.42 and silica fume replacement percentages from 5 to 30. Strength results of 26 concrete mixes, on more than 300 test specimens, have been analyzed for statistical modeling. The ratios of compressive strengths between silica fume and control concrete have been related to silica fume replacement percentage. The expression, being derived with strength ratios and not with absolute values of strength, is independent of the specimen parameters and is applicable to all types of specimens. On examining the validity of the model with the results of previous researchers, it was observed that for results on both cubes and cylinders, predictions were obtained within 7.5% of the experimentally obtained values. 相似文献
11.
In this investigation, two mixes were used: ordinary Portland cement (OPC) and a blended cement prepared with the partial substitution of OPC by 10 mass% silica fume (SF). The setting and hardening characteristics were monitored by the aid of electrical conductivity as a function of curing time. The shear stress and electrical conductivity were studied at different temperatures, namely, 20, 35, 45 and 55 °C. As the temperature increases, the shear stresses decrease with the increase of shear rate. The height of electrical conductivity peaks of superplasticized cement pastes increases due to the increase of the paste fluidity. In the presence of 1.0% polycarboxylate (PC), the electrical conductivity of cement pastes decreases from 1 to 28 days. PC retards the hydration of cement pastes. The presence of PC extended the setting times of cement pastes at 35 °C than at 20 °C due to the increase in the adsorption capacity at this temperature. PC extends the dormant stage of the hydration process and delays the onset of the accelerating stage, without affecting its rate. 相似文献
12.
It is commonly accepted that replacement of a portion of cement in mortar or concrete with well-dispersed silica fume reduces expansion caused by alkali silica reaction. Recently there has been much discussion that large, agglomerated particles of silica fume may actually act as alkali silica reactive aggregates, thereby increasing expansion rather than reducing it. The data in the literature, from both field and laboratory studies, are inconsistent. This prompted an extensive laboratory investigation into the alkali silica reactivity of silica fume. Results from accelerated expansion testing and microscopic investigations are presented. It was seen that some agglomerated silica fumes participate in ASR while others do not. Factors determining the reactivity of silica fume agglomerates are suggested. 相似文献
13.
Li Yu Yang Li Tao Liu Zhonghan Qin Houji Tan Hua Zhang Zhiyuan Chen Hongwei Ni 《Ceramics International》2021,47(11):15186-15194
A FCC waste catalyst-based geopolymer was synthesized from FCC waste catalyst and silica fume, which were used as the main silicon-aluminum raw material and correction material, respectively. Meanwhile, NaOH and water glass composite were used as alkaline activator in the preparation process. Herein, the effects of silicon correction materials, alkaline activator modulus, and silica fume content on the compressive strength performance of prepared geopolymers were discussed. The microstructure was comprehensively analyzed by X-ray diffraction, fourier infrared spectroscopy, nuclear magnetic resonance spectroscopy and scanning electron microscope. The results showed that the prepared geopolymer has good early property when the silica fume content is 50% and the water glass modulus is 1.2. The 3d compressive strength of the obtained sample reaches 23.77 MPa. Microstructure and geopolymerization process analysis indicate that the FCC waste catalyst and silica fume have a good synergistic effect, which confirms the feasibility of preparing the geopolymer by using these industrial waste materials. 相似文献
14.
A mathematical model is presented for estimating compressive strength of high-strength concrete incorporating pozzolanic materials, based on the strength of a control ordinary Portland cement (OPC) concrete made with similar mixture characteristics and curing history. In this study, metakaolin (MK) and silica fume (SF) were used as cement replacement materials at 5%, 10%, and 15% by mass. Water/cementitious materials (w/cm) ratios varied from 0.27 to 0.33, and strength testing was conducted up to an age of 180 days. It was found that the strength of a pozzolanic mixture could be related to the strength of its equivalent control by a linear function. Key parameters involved in the model are the pozzolanic and dilution factors, which can be correlated to the pozzolan content in the mixture. The study concludes that the accuracy of the model increases with concrete age. At ages 28 days and above, 97% of the estimated strengths are within ±5% of the actual value. 相似文献
15.
Effect of silica fume on steel fiber bond characteristics in reactive powder concrete 总被引:5,自引:0,他引:5
In this paper, the effect of silica fume on the bond characteristics of steel fiber in matrix of reactive powder concrete (RPC), including bond strength, pullout energy, etc., are presented. The experimental results on steel fiber pullout test of different conditions are reported. Various silica fume contents ranging from 0% to 40% are used in the mix proportions. Fiber pullout tests are conducted to measure the bond characteristics of steel fiber from RPC matrix. It is found that the incorporation of silica fume can effectively enhance the fiber-matrix interfacial properties, especially in fiber pullout energy. It is also concluded that in terms of the bond characteristics, the optimal silica fume content is between 20% and 30%, given the conditions of the experimental program. The microstructural observation confirms the findings on the interfacial-toughening mechanism drawn from the fiber pullout test results. 相似文献
16.
以硅灰、白炭黑、硅溶胶为硅源,炭黑为碳源,采用碳热还原法合成碳化硅晶须,通过XRD及SEM对合成产物的物相及形貌进行分析,探讨了合成温度(分别为1 400、1 450、1 500、1 550℃)、硅源、n(C)∶n(SiO2)对合成碳化硅晶须的影响.结果表明:n(C)∶n(SiO2)为2.4~3.6,合成温度为1 500 ℃,保温3 h时,硅溶胶与炭黑反应没有生成碳化硅晶须,硅灰、白炭黑与炭黑反应均生成碳化硅晶须;以硅灰为硅源合成碳化硅晶须的质量及数量明显优于以白发黑为硅源合成碳化硅晶须;合成碳化硅晶须的最佳n(C)∶n(SiO2)为3.3. 相似文献
17.
18.
Properties of rubberized concretes containing silica fume 总被引:8,自引:0,他引:8
A test program was carried out to develop information about the mechanical properties of rubberized concretes with and without silica fume. Two types of tire rubber, crumb rubber and tire chips, were used as fine and coarse aggregate, respectively, in the production of rubberized concrete mixtures which were obtained by partially replacing the aggregate with rubber. Six designated rubber contents varying from 2.5% to 50% by total aggregate volume were used. The concretes with silica fume were produced by partial substitution of cement with silica fume at varying amounts of 5–20%. Totally, 70 concrete mixtures were cast and tested for compressive and splitting tensile strengths, and static modulus of elasticity in accordance to ASTM standards. The design strength level ranging from 54 to 86 MPa was achieved using water–cementitious material (w/cm) ratios of 0.60 and 0.40. Test results indicated that there was a large reduction in the strength and modulus values with the increase in rubber content. However, the addition of silica fume into the matrix improved the mechanical properties of the rubberized concretes and diminished the rate of strength loss. Results also revealed that a rubber content of as high as 25% by total aggregate volume might be practically used to produce rubberized concretes with compressive strength of 16–32 MPa. 相似文献
19.
Rashita Abd Rashid Roslinda ShamsudinMuhammad Azmi Abdul Hamid Azman Jalar 《Ceramics International》2014
This paper describes the behaviour of bioactive wollastonite materials containing Malaysian limestone and silica sand. Wollastonite, which is also known as calcium silicate (CaSiO3), is an industrial mineral composed of calcium, silicon and oxygen. Pseudowollastonite, which is a primary crystal of wollastonite, was synthesised via a solid-state reaction at a temperature of 1450 °C. The in-vitro bioactivity of wollastonite was examined by soaking it in simulated body fluid (SBF) solution for 1–7 days at 36.5 °C. The soaked wollastonite samples were characterised using XRD, SEM-EDX, FTIR and ICP analyses. Apatite particles precipitated on the surface of the wollastonite sample after the sample was soaked in the SBF. The XRD analysis indicated the presence of an increasing amount of the hydroxyapatite phase as the soaking time increased. The SEM and EDX analyses indicated the formation of granules of agglomerated apatite particles on the surface of the soaked wollastonite sample. During the formation of apatite, phosphate ions from the SBF solution were consumed. This process was confirmed by ICP, which revealed a decrease in ion concentration after the soaking process. The FTIR analysis indicated that the peaks of the phosphate ions increase when the apatite layer forms on the surface of the wollastonite sample. After the soaking process, a calcium deficient hydroxyapatite layer was observed on the wollastonite sample. The study concludes that wollastonite produced from Malaysian limestone and silica sand is bioactive and may be used as an implantable biomaterial. 相似文献
20.
通过对硅溶胶泥浆的流变性实验确定了硅溶胶泥浆的流变模型,验证并分析了加入少量经过低温氧化过的甘油三酸脂(GTO)不改变硅溶胶泥浆的流变模型,但能有效地改善其流变性能。因此,GTO可作为硅溶胶结合浇注料的高效减水剂。 相似文献