首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the transporting square nosed slugging fluidization regime () a bed of polyethylene powder with a low density () and a large particle size distribution () was operated in two circulating fluidized bed systems (riser diameters 0.044 and 0.105 m). A relation was derived for the plug velocity as a function of the gas velocity, solids flux, riser diameter, particle size range and particle and powder properties. The influence of the plug length on the plug velocity, the raining rate of solids onto and from the plugs and the influence of the particle size range on the plug velocity is accounted for.  相似文献   

2.
The riser of a Circulating Fluidised Bed (CFB) is the key-component where gas-solid or gas-catalytic reactions occur. Both types of reactions require different conditions of operating velocities (U), solids circulation fluxes (G), overall hydrodynamics and residence times of solids and gas. The solids hydrodynamics and their residence time distribution in the riser are the focal points of this paper. The riser of a CFB can operate in different hydrodynamic regimes, each with a pronounced impact on the solids motion. These regimes are firstly reviewed to define their distinct characteristics as a function of the combined parameters, U and G.Experiments were carried out, using Positron Emission Particle Tracking of single radio-actively labelled tracer particles. Results on the particle velocity are assessed for operation in the different regimes. Design equations are proposed.The particle velocities and overall solids mixing are closely linked. The solid mixing has been previously studied by mostly tracer response techniques, and different approaches have been proposed. None of the previous approaches unambiguously fits the mixing patterns throughout the different operating regimes of the riser. The measured average particle velocity and the velocity distribution offer an alternative approach to determine the solids residence time distribution (RTD) for a given riser geometry. Findings are transformed into design equations.The overall approach is finally illustrated for a riser of known geometry and operating within the different hydrodynamic regimes.  相似文献   

3.
不等粒径流化床的软球模拟   总被引:7,自引:1,他引:6       下载免费PDF全文
王芳  欧阳洁 《化工学报》2005,56(8):1467-1473
基于颗粒轨道模型,提出了粒径分别服从均匀分布与正态分布的软球方法,其中流体运动用Navier-Stokes方程描述,颗粒运动服从牛顿第二定理.模拟了不等粒径流化床中的气泡和节涌现象,并分别研究了表观气速、颗粒刚度系数、粒径分布不同时,固相颗粒的速度分布规律.其研究结果表明:分布板结构和表观气速对气泡行为有一定影响,随表观气速的增加,气泡形成、上升、破裂的速度加快;并且刚度系数越大,颗粒轴向速度随时间衰减越快;宽粒径分布的颗粒轴向速度大于窄粒径分布的颗粒轴向速度.  相似文献   

4.
周如金  魏飞  金涌 《化学工业与工程》2001,18(3):182-186,F003
气固并行顺重力场与逆重力场流动形成了迥然不同的流态化机制 :下行床中 ,局部颗粒的聚集会使局部颗粒及气体速度增大 ,而局部气体速度的增大又会破坏颗粒的聚集 ;提升管中因气固逆重力场流动 ,颗粒的聚集会使局部气体及颗粒速度降低 ,而这种降低又会加重颗粒的聚集。与提升管相比 ,下行床具有气固速度和颗粒含率径向分布均匀和气固停留时间短以及返混小等特点 ,其流型更接近平推流  相似文献   

5.
This paper gives experimental measurements of the particle residence time distribution (RTD) made in the riser of a square cross section, cold model, circulating fluidised bed, using the fast response particle RTD technique developed by Harris et al. (Chem. Eng. J. 89 (2002a) 127). This technique depends upon all particles having phosphorescent properties. A small proportion of the particles become tracers when activated by a flash of light at the riser entry; the concentration of these phosphorescent particles can subsequently be detected by a photomultiplier. The influence of the solids circulation rate and superficial gas velocity on the RTD were investigated. The results presented are novel because (i) the experiments were performed in a system with closed boundaries and hence give the true residence time distribution in the riser and (ii) the measurement of the tracer concentration is exceedingly fast. The majority of previous studies have measured the RTD in risers with open boundaries, giving an erroneous measure of the RTD.Analysis of the results suggests that using pressure measurements in a riser to infer the solids inventory leads to erroneous estimates of the mean residence time. In particular, the results cast doubt on the assumption that friction and acceleration effects can be neglected when inferring the axial solids concentration profile from riser pressure measurements.An assessment of particle RTD models is also given. A stochastic particle RTD model was coupled to a riser hydrodynamic model incorporating the four main hydrodynamic regions observed in a fast-fluidised bed riser namely (i) the entrance region, (ii) a transition region, (iii) a core-annulus region and (iv) an exit region. This model successfully predicts the experimental residence time distributions.  相似文献   

6.
This paper reports measurements of the influence of riser exit geometry upon the particle residence time distribution in the riser of a square cross section, cold model, circulating fluidised bed. The bed is operated within the fast fluidisation regime. The fast response particle RTD technique developed by Harris et al. (Chem. Eng. J. 89 (2002) 127-142) was used to measure the residence time distribution.The geometry of the riser exit is shown to have a modest but consistent influence upon the particle RTD; the influence of operating conditions, i.e. superficial gas velocity and solids flux is more significant.Increasing the refluxing effect of the riser exit increases the mean, variance and breakthrough time and decreases the coefficient of variation of the residence time distribution. Changes in reflux do not have a systematic effect upon the skewness of the RTD.  相似文献   

7.
聂向锋  卢春喜  蓝兴英 《化工学报》2008,59(6):1366-1376
在φ80 mm×8000 mm的液固循环流化床提升管中,利用实心玻璃珠和常温水,采用实验和数值模拟相结合的方法对高密度液固循环流化床的流动特性进行了考察。实验发现,高密度液固提升管中,颗粒固含率和颗粒速度径向分布均为抛物线分布,轴向平均固含率分布总体上为下浓上稀的波动形式分布,颗粒在提升管中的流动表现出加速-减速-再加速直至充分发展的过程。这种分布特征与较高颗粒浓度、较高表观液速和颗粒循环速率及喷管式液体分布器的影响有关。液固提升管中固体颗粒的停留时间分布曲线均为尖而窄、较对称且没有明显拖尾的单峰分布,这表明颗粒基本是以弥散颗粒形式存在,颗粒停留时间分布较为均匀。通过将数值模拟结果与实验结果进行比较发现,模拟值与实验值吻合较好,说明所建立的数学模型较为合理,进一步通过数值模拟实验对颗粒密度和颗粒粒径对流动特性的影响规律进行了考察。  相似文献   

8.
Dense-phase pneumatic conveying of solids offers many advantages over dilute-phase conveying. The lower air velocities, and, consequently, lower particle velocities, result in lower pipe wear and lower particle attrition. This paper describes an experimental program that has been undertaken to study the flow pattern of cohesionless solids in vertical transport and to measure the parameters influencing the pressure drop required to move a single plug of solids. Highspeed photographic techniques have been used to observe the flow pattern of polyethylene particles (diameter ? 3 mm) in the vertical riser section of a circulating unit constructed from pipes with an internal diameter of 50.8 mm. The flow pattern resembles that of square-nosed slugging in a fluidized bed. The solids move up as “plugs” of bulk solids that occupy the entire cross-section of the pipe. Particles are seen to “rain” down from the back of one plug and then to be collected by the front of the next plug. Collecting these particles causes a stress on the plug front which is transmitted by powder mechanics forces axially through the plug and radially to the wall. The pressure drop required to move a single plug of cohesionless solids through the transport pipeline was measured as a function of the plug length, particle properties, pipe diameter, and the frontal stress. The results of these experiments are compared with a theoretical model.  相似文献   

9.
In recent years, although an increasing number of literature have been devoted to circulating fluidized bed (CFB), the prediction of velocities over which different fluidization regimes exist is still difficult. In this study, a transient method was applied which readily allows one to identify operational features and critical transitions. The method is based on stopping the solids flow rate into the riser when riser is operating in fully dense transport regime. The analysis of transient pressure drop data across the riser during a solids flow cut-off experiment against its time derivative demonstrate the three distinct operating regimes that exist as the gas deplete the solid out of the riser. The transient was compared to data taken under steady state operations using statistically designed experiments. Results indicated that although there were significant differences when comparing operations in dilute conditions, there were no significant differences between the two methods in the fast fluidized and dense transport regimes. The transient method was capable of reproducing the solids circulation dependence on riser solids holdup and on the axial pressure profile. This transient method offers an accurate, easy, rapid, and reproducible means of characterizing CFB operations over a wide range of flow conditions. The lack of accuracy in the dilute regime is conjectured to be due to the wide particle size distribution that resulted in segregation during the transient testing.  相似文献   

10.
The solids mixing in a riser with a height of 10 m and 0.186 m inner diameter was investigated by using pneumatic phosphor tracer technique. Considering the shielding effect of the bed material on the light emitted from the phosphor tracer particle, a modified method for the phosphor tracer measurement is proposed. And then the curves of particle residence time distribution were obtained. The experimental results show that the particle diffusion mechanism can be explained by the dispersions of dispersed particles and particle clusters in the axial direction, and as well the core-annulus nonuniform distribution of the solids fraction in the radial direction of the riser. Moreover, based on the experimental results, a two-dimensional dispersion model was established to predict the solids axial and radial diffusion. Furthermore, the effects of superficial gas velocity and solids circulating flux on the axial and radial Peclet number of the particles were discussed; two empirical correlation formulas about the axial and the radial Peclet numbers were given; the calculated values agree well with the experimental results.  相似文献   

11.
提升管内气固流动特性的离散元模拟   总被引:3,自引:2,他引:1       下载免费PDF全文
采用离散单元法模型对二维提升管内气固流动特性进行了数值模拟。利用标准k-ε模型模拟气相的湍流流动,考虑了颗粒间的van der Waals力和滚动摩擦的作用。通过对颗粒和气体流动行为的分析,得到了颗粒浓度、速度、温度及气体速度等的分布,研究了表观气速和颗粒循环速率对颗粒流动的影响。结果显示:颗粒在提升管内呈现边壁浓、中心稀的环核流动及上稀下浓的流动结构;气固两相都存在一定程度的返混现象;增加表观气速,使颗粒浓度降低、速度增大,颗粒分布更均匀;增加颗粒循环速率,使颗粒浓度增大,而颗粒速度对颗粒循环速率的变化不敏感,颗粒分布的不均匀性更强。模拟结果与文献中实验定性吻合。  相似文献   

12.
Particle mixing and segregation have been studied in a small-scale fluidized-bed reactor (FBR) under pressure. The solids mixing is relatively faster than the residence time of catalyst particles in the case of a polymerization process, but smaller particles accumulate in the upper zone. Semibatch propylene polymerization experiments showed that the vertical temperature gradients are caused mainly by catalyst segregation. At low gas velocities, segregation and mixing can differ under reacting conditions compared to nonreacting conditions due to particle–particle interactions. Catalyst concentration gradients caused by incomplete mixing are strengthened remarkably by the exothermic reaction even at low polymerization rates. These observations do not represent an industrial situation. The FBR has therefore been equipped with a draft tube and cone to control vertical solids mixing. The internal solids circulation rate is a nonlinear function of the gas velocity. Strongly reduced segregation, elutriation, and entrainment observed were compared to experiments without a draft tube. Temperature profiles observed during polymerization can be controlled by the solids circulation rate. Hydrogen injections led to an instantaneously increased polymerization rate, probably due to the reactivation of dormant sites. Irreversible deactivation rates of dormant and active sites seem to be the same. Moreover, hydrogen appeared to be very effective for widening the molecular-weight distribution. A compartment model developed describes the temperature profile in the reactor and related molecular-weight distribution of the polymer.  相似文献   

13.
This paper reports the solids behaviour in a dilute gas-solid two-phase mixture flowing through a packed bed. The positron emission particle tracking (PEPT) technique was used in the work, which allowed investigation of three-dimensional solids motion at the single suspended particle level. Processing of the data gave solids velocity, the residence time of suspended particles, bed tortuosity in terms of solids motion, as well as solids occupancy in the cross-section of the packed bed. The results suggest that the wall effect on the motion of suspended particles is limited to approximately one packed particle diameter under the conditions of this work. Both the average axial and radial velocities of suspended particles, normalised by the superficial gas velocity, change periodically with radial position, but the periodicity does not correspond exactly to the packed particle diameter. The peak and trough values of the average axial velocity of the suspended particles in the bulk region are, respectively, ∼25% and ∼15% of the superficial gas velocity under the conditions of this work and the superficial gas velocity shows little effect. The peak and trough values of the average radial velocity of the suspended particles in the bulk region are, respectively, +5% (positive) and -5% (negative) of the superficial gas velocity. The results of the residence time and tortuosity of the suspended particles show an approximately Gaussian distribution with the peak residence time and tortuosity increasing with decreasing superficial gas velocity. The occupancy data suggest that particles spend more time in an annular region close to the wall, indicating a non-uniform particle distribution across the packed bed cross-section.  相似文献   

14.
16m高气固提升管中的压力梯度与流动行为研究   总被引:2,自引:0,他引:2  
在较宽操作条件范围对16m高提升管中气-固两相流(空气-FCC颗粒)的压力梯度进行了实验测试,进一步揭示了快速流态化和密相气力输送这两种流动形态的动力学特征及其与操作参数的关系。结果表明,在表观气速增大的过程中气固提升管中的轴向压力梯度并非总是不断趋于均匀分布;提升管高度对快速流态化到密相气力输送状态的过渡有重要影响,对于给定的表观气速,提升管高度增加将使过渡点所应的颗粒循环量和床层颗粒浓度都减小。本实验条件下所有过滤点对应的床层颗粒浓度较为一致,平均为0.0104,并由此得到过渡点操作参数Ug与Gs的关联式。本文研究表明,在以往工作基础上进一步研究提升管高度对流动行为的影响极有必要。  相似文献   

15.
采用脉冲示踪法在内置螺旋挡板冷态鼓泡流化床上研究了螺旋挡板、加料速率、流化风速、颗粒粒径和床料高度对颗粒在流化床内停留时间分布的影响. 结果表明,颗粒停留时间的无量纲方差从无螺旋挡板时的0.558减小到有螺旋挡板时的0.085,螺旋挡板可有效抑制颗粒返混,增大颗粒运动的平推流趋势;加料速率增大为约2倍时,停留时间减小为约50%,流动更趋向于平推流;床料高度增加,颗粒返混加剧,颗粒平均停留时间及无量纲方差均增大,颗粒运动向全混流靠近;随流化风速增大,颗粒平均停留时间变长;实验范围内,颗粒粒径对颗粒停留时间分布影响不大.  相似文献   

16.
The pressure profiles, gas velocities, solid circulation rate, solids flux, residence time distribution of gas and particles in chemical-looping combustion reactors and gas leakage were studied in a cold flow model unit. And these parameters in both air and fuel reactors were measured in the experimental stage. The experimental results show that gas fluidization velocity in the air reactor is 1.8 m/s, gas fluidization velocity in the fuel reactor 0.5 m/s, and the bed materials inventory of the two reactors between 1.2 to 3.15 kg. The first cold flow model results show that the solid circulation rates are sufficient. The appropriate operating conditions are optimized and the summary of final changes is made the on cold model. The proposed design solutions are currently being verified in a cold flow model simulating the actual reactor(hot) system. This paper presents an overview of the research performed on a cold flow model and highlights the current status of the technology.  相似文献   

17.
A series of experiments was conducted in a 0.3-m diameter circulating fluidized bed (CFB) cold model to evaluate the operating flow regimes and their transitions. A single unambiguous experimental method was developed to identify the transitions between CFB operating regimes. Experiments were conducted at riser gas velocities ranging from dense phase turbulent, through fast fluidization (S-shape riser pressure profile), and up to dilute-phase flow regimes. A transient method was applied to a low density, Geldart Type B, cork bed material. Two distinct transition velocities were found by analyzing the time required to empty out all solids from the riser of the CFB after cutting off solids flow. The lowest transition velocity marked the transition between the dense-phase turbulent and the fast fluidization flow regimes, while a higher or second transition represented the transition between the fast fluidization and the dilute-phase flow regimes. Based on the experimental results, the axial pressures and its fluctuations along the riser exhibited markedly distinct profiles in each of the three different operating flow regime regions as defined by these two transport velocities.  相似文献   

18.
The effects of particle properties (particle density, size and sphericity) on solids concentration in a 2-D riser were comprehensively investigated by measuring the axial and lateral solids concentration with an optical fiber probe. In this study, solids concentration of different types of particles shows that heavier particles have higher solids concentration laterally and axially than lighter particles; larger particles result in more compact solids distribution and such size effect is more evident at the riser bottom; more spherical particles lead to higher solids concentration. Various forces acting on particles and the change in the slip velocity between gas and particles were used to explain the effects of particle properties on solids distribution.  相似文献   

19.
The pressure profiles, gas velocities, solid circulation rate, solids flux, residence time distribution of gas and particles in chemical-looping combustion reactors and gas leakage were studied in a cold flow model unit. And these parameters in both air and fuel reactors were measured in the experimental stage. The experimental results show that gas fluidization velocity in the air reactor is 1.8 m/s, gas fluidization velocity in the fuel reactor 0.5 m/s, and the bed materials inventory of the two reactors between 1.2 to 3.15 kg. The first cold flow model results show that the solid circulation rates are sufficient. The appropriate operating conditions are optimized and the summary of final changes is made the on cold model. The proposed design solutions are currently being verified in a cold flow model simulating the actual reactor (hot) system. This paper presents an overview of the research performed on a cold flow model and highlights the current status of the technology.  相似文献   

20.
Bed expansion of fine powders was investigated in two high aspect ratio fluid beds, an expanded top bed and a circulating system. The range of gas velocities (0.07 – 8 m/s) spanned the bubbling/slugging, turbulent, fast, and dense conveying fluidization regimes. The two-phase theory was shown generally not to apply in the slugging and the higher velocity fluidization regimes. A modified Richardson-Zaki approach, using an ‘effective’ cluster terminal velocity, was shown to adequately describe bed expansion. Changes in slope of the expansion curve were associated with regime changes, and can prove useful for the analysis of large diameter fluid beds. The effect of particle size distribution was shown to be considerable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号