首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高掺量粉煤灰高延性水泥基复合材料的制备和性能   总被引:2,自引:0,他引:2  
高延性水泥基复合材料(hjgh ductility cementitious composites,HDCC)是一种具有应变硬化、多缝开裂和高延性等特性的新型纤维增强水泥基复合材料,其材料设计必须取得基体韧度、界面黏结和纤维特性三者的最优组合,因此,HDCC的制备必须优选原材料和优化配合比,以取得最优的材料制备技术.从配合比设计入手,研究了粉煤灰含量、胶砂比等对HDCC力学性能的影响,优化了特定材料下的材料制各技术.结果表明:粉煤灰含量、胶砂比和养护条件对HDCC的拉伸性能均具有较大的影响.随着粉煤灰掺量的增大,砂含量的降低,拉伸应变增大.当砂含量较高时,基体开裂韧度较高,基体的极限拉伸应力下对应的极限拉伸应变较小,然而随着应力的下降,复合材料仍然能维持相当大的应变·  相似文献   

2.
《Ceramics International》2022,48(2):1999-2011
Red mud (RM) is an industrial by-product created during the production of alumina/aluminium that has engendered severe environmental concerns arising from its improper disposal. To mitigate the negative environmental impact of RM waste and produce a sustainable material having high mechanical performance (particularly ductility) for a variety of applications, this study developed an alkali-activated fiber reinforced composite (AAFRC) using RM, ground granulated blast-furnace slag (or slag), and silica fume as the precursors. The effects of two different curing conditions (ambient-curing and heat-curing) on the mechanical properties and microscopic characteristics of the material were systematically investigated. The heat-cured RM-derived AAFRC exhibited excellent tensile strain capacity (or ductility) of up to 5.6%, which was significantly higher than that of its counterpart that was cured under ambient condition. Despite the reduction in strength caused by heat-curing, AAFRC retained adequate tensile and compressive strengths of 4.0 and 75 MPa, respectively. The results of three-point bending, single crack tensile, and single fiber pullout tests provided reasonable explanations for the tensile behaviors of the studied material. Scanning electron microscopy revealed that a less compacted matrix was formed in the RM composite due to heat-curing. The combined results from energy dispersive spectroscopy and nanoindentation tests indicated that adding red mud did not alter the types of reaction products for the material, which were similar in composition to conventional alkali-activated slag while also including C-A-S-H and N-A-S-H gels in addition to a type of layered double hydroxide. These findings can serve as theoretical guidelines for the future design and application of eco-friendly, high-ductile cementless composites prepared from RM waste.  相似文献   

3.
To investigate the effects of environmental temperature on fracture behavior of a polyetherimide (PEI) thermoplastic polymer and its carbon fiber (CF/PEI) composite, experimental and numerical studies were performed on compact tension (CT) and double cantilever beam (DCB) specimens under mode‐I loading. The numerical analyses were based on 2‐D large deformation finite element analyses (FEA). Elevated temperatures greatly released the crack tip triaxiality (constraint) and promoted matrix deformation due to low yield strength and enhanced ductility of the PEI matrix, which resulted in the greater plane‐strain fracture toughness of the bulk PEI polymer and the interlaminar fracture toughness of its composite during delamination propagation with increasing temperature. Furthermore, the high triaxiality was developed around the delamination front tip in the DCB specimen, which accounted for the poor translation of matrix toughness to the interlaminar fracture toughness by suppressing the matrix deformation and reducing the plastic energy dissipated in the plastic zone. Especially, at delamination initiation, the weakened fiber/matrix adhesion at elevated temperatures led to premature failure of fiber/matrix interface, suppressing matrix deformation and preventing the full utilization of matrix toughness. Consequently, low interlaminar fracture toughness was obtained at elevated temperatures. POLYM. COMPOS., 26:20–28, 2005. © 2004 Society of Plastics Engineers.  相似文献   

4.
《Ceramics International》2017,43(8):5999-6007
This paper investigates the micromechanics constitutive modelling and optimization of a fiber-reinforced strain-hardening geopolymer composite (SHGC) recently developed by the authors. Micromechanical parameters of the developed fly ash-based SHGC were independently measured or deduced to compute the analytical crack bridging (σ-δ) relation of the composite. The predicted σ-δ relation was compared with the experimental test results. It was confirmed that the previously developed micromechanics-based model can reasonably predict the σ-δ relation of fly ash-based SHGCs. Using the verified model, a parametric study was then performed to evaluate the effects of fiber length, fiber surface oil-coating, and matrix fracture toughness on critical (minimum) fiber content required to exhibit saturated pseudo strain-hardening (PSH) behavior. The results indicated that the critical fiber content in fly ash-based SHGCs is mainly governed by the energy-based criterion. It was demonstrated that the fiber surface oil coating, the increase of fiber length and the reduction of matrix fracture toughness are effective approaches to reduce the critical fiber content. Using the model, it was demonstrated that fly ash-based SHGCs can be systematically optimized by proper tailoring of the material constituents to achieve saturated PSH behavior with the lowest amount of fiber, and thereby the lowest cost.  相似文献   

5.
Tensile and fracture tests were conducted at 20° and 1200°C on a ceramic-matrix composite that was composed of an alumina (Al2O3) matrix that was bidirectionally reinforced with 37 vol% silicon carbide (SiC) Nicalon fibers. The composite presented nonlinear behavior at both temperatures; however, the strength and toughness were significantly reduced at 1200°C. In accordance with this behavior, matrix cracks were usually stopped or deflected at the fiber/matrix interface, and fiber pullout was observed on the fracture surfaces at 20° and 1200°C. The interfacial sliding resistance at ambient and elevated temperatures was estimated from quantitative microscopy analyses of the saturation crack spacing in the matrix. The in situ fiber strength was determined both from the defect morphology on the fibers and from the size of the mirror region on the fiber fracture surfaces. It was shown that composite degradation at elevated temperature was due to the growth of defects on the fiber surface during high-temperature exposure.  相似文献   

6.
Fiber-metal laminates (FMLs) offer the superior characteristics of polymer composites (i.e., light weight, high strength and stiffness) with the ductility and fracture strength of metals. The bond strength between the two dissimilar materials, composite and metal, dictates the properties and performance of the FMLs. The bonding becomes more critical when the polymer matrix is thermoplastic and hydrophobic in nature. This work employed a novel bonding technique between thermoplastic composites and a metal layer using six different combinations of organic coatings. The flexural, and interlaminar shear strength of the thermoplastic fiber metal laminates (TP-FMLs) were examined to investigate the bond strengths in the different cases along with fracture characteristics revealed from the tested samples using scanning electron microscopy. The viscoelastic performance of the fabricated TP-FMLs were also investigated using the dynamic mechanical thermal analysis method.  相似文献   

7.
Single crystals of lithium fluoride were pulled in tension at high temperatures; the results of these tests are compared with data for magnesium oxide. Interpenetration of {110}〈110〉 slip systems does not occur in LiF as readily as in MgO. Because of this lack of interpenetrability, plastic instability and completely ductile fracture do not occur in LiF below 700°C (0.87 T mp); the high-temperature tensile strength of LiF decreased very little from 300° to 700°C. This lack of interpenetrability of slip systems in LiF at high temperatures also had a profound effect on the deformation processes, the development of substructure, and the strain-hardening and fracture characteristics of the material. This work emphasizes the importance of interpenetration of slip not only in the high-temperature ductility and strain-hardening processes but also in the maximum tensile strength which ionic crystals develop before fracture.  相似文献   

8.
Brittle nature of gypsum restrains its wide application in construction industry. For improvement, a novel type of composite material, gypsum-based engineered cementitious composites (GS-ECC), was developed using specially chosen polyethylene (PE) fibers. This study investigated the rheological and mechanical properties of GS-ECC, that is, workability, uniaxial tensile and compressive behavior, flexural strength, etc The investigation showed that GS-ECC possessed excellent tensile strain-hardening behavior and saturated cracking characteristics with the average tensile strain capacity more than 5%. To explore the underlying mechanism, the microstructure of interface transition zone (ITZ) between gypsum crystals and PE fibers were investigated through the use of SEM. Single fiber pull-out test, bending-fracture test, and single crack tension test were conducted to investigate the mesoscopic properties from fiber/matrix interface to matrix toughness and fiber bridging capacity. This study demonstrates the feasibility of achieving strain-hardening gypsum-based composites by adding the PE fibers.  相似文献   

9.
朱弘康  林常  蔡舒  徐树英  潘莉莎 《硅酸盐通报》2021,40(11):3693-3701
本文对比分析了4种不同聚乙烯醇(PVA)纤维分别在不同配合比地聚合物基体中的增韧作用,为利用国产无表面涂油PVA纤维制备应变硬化地聚合物基复合材料(SHGC)提供实验数据。主要研究矿渣与粉煤灰的比例、碱溶液的浓度、纤维尺寸以及纤维表面特性等因素对地聚合物基复合材料抗压和直接拉伸性能的影响。结果表明,经过7 d室温养护,含矿渣的地聚合物基体和复合材料的抗压强度均高于30 MPa,而纯粉煤灰地聚合物基体和复合材料的抗压强度较低,为12~15 MPa。表面涂油PVA纤维SHGC的延展性普遍高于无表面涂油PVA纤维SHGC。然而,通过调节地聚合物基体配合比,可以提高无表面涂油PVA纤维的增韧效果。当粉煤灰质量分数为33%时,无表面涂油PVA纤维SHGC的极限拉伸应变达1.44%,与表面涂油PVA纤维SHGC相当。在纯粉煤灰的情况,4种PVA纤维复合材料均呈现出稳定的多缝开裂和应变硬化特征。  相似文献   

10.
以矿渣微粉(SP)和玻璃纤维(GF)为填料,经共混、挤出造粒、注射成型工序制备聚已内酰胺(PA6)/GF/SP三元复合材料,采用扫描电子显微镜观察断口形貌,通过检测复合材料试样的拉伸强度、冲击强度研究不同GF/SP配比比例以及SP的粒径对复合材料的力学性能影响。结果表明,当GF/SP配比填料总量定为30 %(质量分数,下同),SP与GF比例为1∶3时,平均粒径为7 μm的SP有最好的增强效果,拉伸强度为96.8 MPa;当SP平均粒径为15 μm时,三元复合材料具有最佳的冲击强度,比纯PA6提高了32.4 %,达到8.31 kJ/m2。  相似文献   

11.
本文研究了粉煤灰掺量对基体强度、聚乙烯醇(PVA)纤维/水泥基体间界面作用以及无表面修饰PVA纤维应变硬化水泥基复合材料(SHCC)拉伸性能的影响。结果表明,随着粉煤灰掺量的增加,基体的28 d抗压强度在18~93 MPa内呈下降趋势。单轴拉伸试验结果表明,掺入20%(质量分数,下同)和50%粉煤灰对SHCC的影响不明显,随着粉煤灰掺量增至67%和80%,SHCC的多微缝开裂和应变硬化特征呈增强趋势,极限应变值也相应增大,最高达7.2%,并且具有轻质特性。单纤维拔出试验结果显示,高掺量粉煤灰不仅可以降低PVA纤维与基体间的化学黏结作用,还能减弱界面摩擦作用,从而有效抑制了PVA纤维在拔出过程中出现过早断裂,显著提高了无表面修饰PVA纤维SHCC的延展性。  相似文献   

12.
三维石英织物增强氮化硅基复合材料的制备及其力学性能   总被引:3,自引:0,他引:3  
以分子结构单元为[SiH2NH]n的全氢聚硅氮烷作先驱体,采用聚合物浸渍裂解法制备了三维石英织物增强氮化硅基复合材料(3DSiO2f/Si3N4)。研究了复合材料的致密化工艺与力学性能。结果表明:全氢聚硅氮烷与石英纤维润湿性好,浸渍效率高,陶瓷产率高;经5个浸渍裂解周期后复合材料密度达1.96g/cm^3,孔隙率为10.9%,复合材料室温弯曲强度为33.5MPa,弹性模量为16.3GPa。由断口形貌看出:材料呈现脆性断裂,无纤维拔出现象,纤维与基体发生了较强的界面结合,基体内部和纤维表面均出现微裂纹。界面结合过强是导致3DSiO2f/Si3N4复合材料力学性能不佳的主要原因。  相似文献   

13.
In this study, glass fibers were modified using γ‐glycidoxypropyltrimethoxysilane of different concentrations to improve the interfacial adhesion at interfaces between fibers and matrix. Effects of γ‐glycidoxypropyltrimethoxysilane on mechanical properties and fracture behavior of glass fiber/epoxy composites were investigated experimentally. Mechanical properties of the composites have been investigated by tensile tests, short beam tests, and flexural tests. The short‐beam method was used to measure the interlaminar shear strength (ILSS) of laminates. The tensile and flexural properties of composites were characterized by tensile and three‐point bending tests, respectively. The fracture surfaces of the composites were observed with a scanning electron microscope. On comparing the results obtained for the different concentrations of silane solution, it was found that the 0.5% GPS silane treatment provided the best mechanical properties. The ILSS value of heat‐cleaned glass fiber reinforced composite is enhanced by ∼59% as a result of the glass fiber treatment with 0.5% γ‐GPS. Also, an improvement of about 37% in tensile strength, about 78% in flexural strength of the composite with the 0.5% γ‐GPS treatment of glass fibers was observed. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
An investigation into the compressive and tensile behavior of a carbon fiber reinforced resin matrix composite at high strain rates is carried out using a split Hopkinson bar. All the dynamic tests are performed under the condition of stress equilibrium and constant strain rate. The results of the compressive tests show that the failure strength and strain of the composite increase with the increase of strain rate. A plateau is observed in a typical stress–strain curve which prompts further study into the failure mechanism by monitoring the failure process with a high-speed camera. The three-phase failure mechanism of on-impact compression, crack-induced unloading, and crack deviation-caused further condensation, is found to have greatly increased the strength and toughness of the composite. In the tensile tests, an increase of strain rate produces a reduced fracture angle and extended crack path. In this process, more failure energy is absorbed, thus the failure strength and strain of the composite are improved. The Cowper–Symonds model of strain rate dependency indicates that the material has a higher tensile strength than compressive strength, and the strain rate sensitivity is more noticeable at high stain rates than quasi-static conditions.  相似文献   

15.
Biodegradable composites reinforced with natural fibers are emerging as advanced materials in structural applications. In this work, green biocomposites are fabricated using hot pressing molding technique, polylactic acid selected as a matrix. The samples are prepared with different fiber volume fractions (30%, 40%, and 50%). Tensile tests are conducted on the specimens to investigate the composite mechanical behavior, and the influences of fiber content on the morphological and thermomechanical properties are evaluated using scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. There are higher tensile modulus and lower elongation at break for composites with increasing fiber content, respectively. Much variation in the tensile strength is observed when the fiber content is varied, which could be attributed to fiber agglomerations that affect the dispersion of fibers in the matrix, as evidenced by fracture surfaces. Thermal tests demonstrate that the increment of fiber content enhances the glass transition temperature and crystallization temperature of composites. Besides, a comparative analysis of the composites is performed, and the properties of the treated fiber composites are found to be improved compared to those from untreated fibers. Detailed analysis confirms the possibility of the addition of bamboo fibers to a biodegradable matrix for a specific application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46148.  相似文献   

16.
Continuous alumina fiber-reinforced yttria-stabilized zirconia (YSZ) composites with a LaPO4 fiber coating were fabricated by slurry infiltration and spark plasma sintering (SPS). The LaPO4 coating was deposited on the reinforcement alumina fabrics by a modified sol-gel method. The YSZ slurry with good dispersion and stability was prepared by optimizing the pH value, dispersant addition and ball milling time. The fabricated composite with a high density of ∼ 92 % has a good flexural strength of 277 ± 43 MPa, and a superior fracture toughness of 15.93 ± 0.75 MPa·m1/2 exhibiting a non-brittle failure behavior. It was found that the LaPO4 coating reduced the residual stress near the fiber/matrix interface to 131 ± 41 MPa, which was 369 ± 63 MPa in the composite without the fiber coating. The LaPO4 coating renders a weak interphase to improve the composite toughness by activating several toughening mechanisms including crack deflection, fiber debonding and pullout, and delamination behavior.  相似文献   

17.
Glass-ceramic composites with improved high-temperature mechanical properties have been produced by incorporating continuous SiC fibers into a barium magnesium aluminosilicate matrix. Control of the fiber/matrix interface was achieved by a dual-layer coating of SiC/BN(C) applied to the fibers by CVD. The weakly bonded interface resulted in composites with high fracture toughness and strength up to 1100°C, and the composite system was oxidatively stable during long-term exposure to air at high temperatures. Composites with different thermal and mechanical histories were studied, and interfaces were characterized using transmission electron microscopy (TEM), Auger electron spectroscopy, and fiber pushout tests. Observations of interfacial microstructure were correlated with the mechanical properties of the composite and with interface properties determined from fiber push-out tests.  相似文献   

18.
This study investigates the mechanical properties of wood-fiber/toughened PP composite modified by physical blending with an EPDM rubber to improve impact toughness. Wood-fiber thermoplastic composites were prepared with a modified PP matrix resin, employing high shear thermokinetic compounding aided with maleated PP for the fiber dispersion. The addition of EPDM improved the impact toughness, while it reduced stiffness and strength properties. To compensate the non-plane strain fracture toughness, the specimen strength ratio (Rsb) was adopted as a comparative measure of fracture toughness. The strength ratio increased with the addition of EPDM, while it decreased with increasing wood-fiber concentration. The work of fracture increased with EPDM level except at large wood-fiber concentration. The effectiveness of the impact modification was assessed with the balance between tensile modulus and unnotched impact energy as a function of wood-fiber concentration. EPDM rubber modification was moderately effective for wood-fiber PP composites. The examination of fracture surfaces showed twisted fibers, fiber breakage, and fiber pull-out from the matrix resin.  相似文献   

19.
Weak fiber/matrix interface dominates the toughening properties of ceramic matrix composites. This paper reports a novel sol-gel fabricated carbon fiber reinforced mullite matrix composite, in which the fiber/matrix interface was inherently weak in shear properties (∼25 MPa), measured in-situ by fiber push-in tests. The interface microstructure was chemically sharp, characterized by transmission electron microscopy. The outcome of the weak interface was the full trigger of the toughening mechanisms like crack deflection, etc., leading to significant enhancement of the fracture toughness of the composite (∼12 MPa√m), measured by single edged notch beam method. Finally, due to the weak fiber/matrix interface and large thermal expansion mismatch of the fiber and matrix, the high temperature fracture strength was enhanced in the temperature range from 25 to 1200 °C, which is attributed to the enhancement of the interfacial property at elevated temperatures that favors better load transfers between composite constituents.  相似文献   

20.
Owing to the degradation of the mechanical properties of the SiC fiber reinforced SiC matrix (SiCf/SiC) composites with the pyrocarbon (PyC) and BN interphases under oxidation environment and neutron irradiation, single layer SiC interphases prepared by chemical vapor deposition (CVD) process were employed to substitute for them. Effects of the CVD SiC interphases on the mechanical properties and interfacial characteristics of the SiCf/SiC composites fabricated by precursor infiltration and pyrolysis (PIP) process were investigated. Compared with the as-received SiCf/SiC composites, the SiCf/SiC composites with the single layer CVD SiC interphases exhibit an obvious toughened fracture behavior, the flexural strength of which is about 4 times that of the as-received SiCf/SiC composites. From the microstructural analysis, it can be confirmed that the SiC interphases play a key part in protecting the fibers from damage during composite preparation and weakening interfacial bonding, which can provide high in situ fiber strength and appropriate interfacial bonding strength for the SiCf/SiC composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号