首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
The influence of lithium nitrate on expansions due to delayed ettringite formation (DEF) and alkali-silica reaction (ASR) has been investigated. Effects of the lithium salt were examined in heat-cured mortars and concretes containing one or both damage mechanisms. The mortars and concretes made using reactive and/or non-reactive aggregates were subjected to heat treatment consisting of a hydration delay period of 4 h at 23 °C followed by steam-curing at 95 °C and then stored in limewater. Results showed that the lithium salt admixture was able to reduce the occurrence of deleterious expansion due to delayed ettringite formation in addition to controlling alkali-silica reaction in cementitious systems containing one or both mechanisms. In concretes made using non-reactive limestone aggregates, incorporation of lithium nitrate in a proportion of 0.74 M ratio of Li to (Na + K) was found to control delayed ettringite formation during the one-year period of this study.By analyzing the leaching properties of lithium and other alkalis from mortars during storage, it was found that a substantial amount of lithium was retained in the cementitious system in a slightly soluble form, and is expected to be responsible for reducing DEF.  相似文献   

2.
Mortars and concretes were subjected to a heat treatment cycle consisting of a pre-set period of 4 h at 23 °C followed by accelerated curing at 95 °C prior to storage at room temperature in water or limewater, 0.5 M, 2.8 M sodium chloride solutions. It was found that the specimens stored in 0.5 M sodium chloride solution gave a much greater expansion than those stored in limewater or 2.8 M sodium chloride solution. This pessimum influence of chlorides on expansion due to delayed ettringite formation deviates from the commonly held view that chlorides mitigate sulphate attack in concretes. The mechanism of the pessimum effect of chlorides on expansion due to delayed ettringite formation, and the final products of the associated phase transformations have been proposed. X-ray diffraction and differential thermal analysis techniques were used to follow phase transformations.  相似文献   

3.
Although more than 10 years of studies on delayed ettringite formation (DEF) have led to consensus in numerous areas of past disagreements, some questions remain experimental work is needed to complete the knowledge of this pathology. Following this objective, this paper studies the influence of pre-existing microcracking, wetting/drying cycles and the type of sulfated addition on DEF in steam cured mortars. The mortar specimens were prepared using an Ordinary Portland Cement and two types of sulfate were added to the mixtures: calcium sulfate (CaSO4) or sodium sulfate (Na2SO4). The results confirm the well-known effect of temperature: no expansion was observed in any of the mixtures cured at room temperature. Moreover, no expansion was observed after 800 days for the reference mortar or for the mortar containing calcium sulfate but all the specimens of heat-cured mortars containing sodium sulfate expanded markedly after about 50 days whatever the supplementary treatments applied (thermal shrinkage or wetting/drying cycles). These results show the significant role played by alkalis in the occurrence of delayed ettringite. The supplementary treatments intended to cause prelimiray microcracking of the specimens did not promote expansion but contributed to a slight acceleration of the reaction. The ultimate values of expansion were similar to those obtained with sound mortars.  相似文献   

4.
Cases of delayed ettringite formation (DEF) have mainly been detected on mortars or precast concretes steam-cured according to a predefined temperature cycle during hydration. The present study shows that other situations in which the material is submitted to a temperature cycle can induce DEF expansions. Mortar bars were made with three different cements (types 10, 20M, and 30). As a first heat treatment, the mortar bars were steam-cured to reproduce the temperature cycle they would undergo if they were at the center of a large mortar member. The dimensional variations of these specimens were studied for 1 year. After 1 year, half of the specimens were steam-cured for 1 month at 85 °C. The expansions were followed for two more years. The early-age steam-cure-induced expansions for mortar types 10 and 30. Late steam-curing induced expansions for the three cements tested. In one case (cement type 20M), the early-age steam cure has suppressed or delayed the expansion induced by the late steam cure. A scanning electron microscopy (SEM) study showed that typical DEF symptoms are associated with the expansions.  相似文献   

5.
In a previous paper, it was concluded that silicocarbonatite aggregates from the Francon quarry, Montreal contributed to durability problems in Portland cement concrete. Results show that, at 2 days after casting, concrete made with silicocarbonatite aggregates contained over 1.5% more Na2O than similar bars made with Exshaw limestone aggregates. A reaction involving the rare mineral dawsonite in the silicocarbonatite is thought responsible for the higher Na2O content. In turn, this caused increased expansion of concrete bars made with alkali expansive aggregates. Also, concrete made with alkali-carbonate reactive Pittsburg aggregate showed more expansion when cured at 80 °C than bars cured at 23 °C. Concrete bars made with Exshaw limestone aggregates cured for 4 h at 85 °C showed late-stage expansion, which is attributed to delayed ettringite formation (DEF). However, no expansion was shown by heat-cured concrete prisms or mortar bars made with silicocarbonatite aggregates. Release of alkalis, aluminates and carbonates by the dawsonite reaction may have inhibited DEF. Concrete bars made with nonreactive Nelson dolostone and 10% silicocarbonatite cured at 80 °C for 4 h showed up to 0.15% expansion after several years at 23 °C and 100% relative humidity (R.H.), indicating that a deleterious reaction did occur.  相似文献   

6.
A petrographic examination of cracked Swedish concrete railroad ties identified delayed ettringite formation (DEF) as the damaging mechanism. This was unexpected because the concrete railroad ties were steam-cured with a maximum concrete temperature below 60 °C.The consensus in the published literature is that DEF only occurs in concrete subjected to heat curing above 70 °C. However, DEF is not only influenced by the curing temperature, but also by various other factors, such as cement composition (alkalis, C3S, C3A, SO3, and MgO), fineness, etc. If an unfavorable combination of these parameters exists, delayed ettringite may occur at lower temperatures than 70 °C.In this paper, the influence of various parameters on DEF is discussed with reference to the investigated concrete.  相似文献   

7.
The consequences of external sulfate attack were investigated by traditional test methods, i.e. length and mass change, as well as by a newly developed, surface sensitive ultrasonic method, using Leaky Rayleigh waves (1 MHz). The macroscopic changes are discussed and compared with thermodynamic calculations and microstructural findings (SEM/EDS). The results show that the main impact of limestone additions on resistance to sulfate degradation are physical — i.e. addition of a few percent in Portland cement reduces the porosity and increases the resistance of Portland cement systems to sulfate; but higher addition of 25% increase porosity and lower resistance to sulfate. The kinetics of degradation were dramatically affected by the solution concentration (4 or 44 g Na2SO4/l) and the higher concentration also resulted in the formation of gypsum, which did not occur at the low concentration. However the pattern of cracking was similar in both cases and it appears that gypsum precipitates opportunistically in pre-formed cracks so it is not considered as making a significant contribution to the degradation. At 8 °C limited formation of thaumasite occurred in the surface region of the samples made from cement with limestone additions. This thaumasite formation led to loss of cohesion of the paste and loss of material from the surface of the samples. However thaumasite formation was always preceded by expansion and cracking of the samples due to ettringite formation and given the very slow kinetics of thaumasite formation it was probably facilitated by the opening up of the structure due to ettringite induced cracking.The expansion of the samples showed a steady stage, followed by a rapidly accelerating stage, with destruction of the samples. The onset of the rapidly accelerating stage occurred when the thickness of the cracked surface layer reached about 1–1.5 mm–10–15% of the total specimen thickness (10 mm).  相似文献   

8.
The effect of temperature on the hydration products and the composition of the pore solution are investigated for two Portland cements from 5 to 50 °C. Increased temperature leads to an initially fast hydration and a high early compressive strength. At 40 and 50 °C, the formation of denser C-S-H, a more heterogeneous distribution of the hydration products, a coarser porosity, a decrease of the amount of ettringite as well as the formation of very short ettringite needles has been observed. At 50 °C, calcium monosulphoaluminate has formed at the expenses of ettringite. In addition, the amount of calcium monocarboaluminate present seems to decrease. The composition of the pore solution mirrors the faster progress of hydration at higher temperatures. After 150 days, however, the composition of the pore solution is similar for most elements at 5, 20 and 50 °C. Exceptions are the increased sulphate concentrations and the slightly lower Al and Fe concentrations at 50 °C.  相似文献   

9.
Mortars were prepared from laboratory cements blended from a set of six representative ground clinkers and Terra Alba gypsum. The addition of gypsum was such that cements containing 1% SO3 less than the optimum SO3 content, the optimum SO3 content, and 1% greater than the optimum SO3 content were produced. Mortar bars and mortar cubes containing each of these cements were exposed to continuous room temperature (23 °C) curing, or to early-age curing cycles involving maximum temperatures of 55 and 85 °C, followed by long-term exposure at 100% RH over water, but not immersed in water. Measurements of expansion, dynamic elastic modulus, and weight gain were recorded at intervals of up to 900 days. Severe cracking and prominent delayed ettringite formation (DEF)-induced expansions were observed in 85 °C cured mortar bars derived from four of the six “oversulfated” cements. Much smaller expansions were observed in mortar bars from two cements with optimum SO3 content cements also cured at 85 °C. No expansion or other visible indication of distress was observed for any of the 55 °C or continuously room-temperature-cured mortars. The dynamic elastic modulus increased progressively on prolonged exposure for the unaffected mortar bars, but it decreased precipitously after the onset of expansion in affected mortar bars. Significant weight increases also accompanied the processes of expansion. Mortars that showed severe cracking and deterioration when exposed as mortar bars suffered almost no visible damage when exposed as cubes.  相似文献   

10.
Increasing the concrete alkali content from 0.6% to 1.25% of Na2Oe of the cement mass by adding NaOH to the mixture water has harmful effects on most mechanical properties (compressive, splitting, direct tensile, and flexure strengths) of concrete made with a water-to-cement (w/c) ratio of 0.41 and limestone aggregates not susceptible to alkali-silica reaction (ASR), however not on the elasticity modulus measured under compression or direct tension. Shrinkage tests at 50% RH and 23 °C started after 7 days at 100% RH and 23 °C show that the low-alkali concrete shrinks more than the high-alkali one, despite similar water losses. Freeze-thaw tests performed on air-entrained concretes show that the two concretes resist well to freezing and thawing while showing similar air-void systems. When examined under the scanning electron microscope (SEM), the hydrates in the two concretes present similar microstructure; however, the high-alkali concrete shows a more reticular and porous microtexture, which could explain the reduction in strength.  相似文献   

11.
Two clinkers rich in sulphate burned in the pilot plant rotary kiln and cements prepared from them were investigated. Clinker richer in sulphate (SO3=3.6%) contained independent anhydrite grains as well as inclusions of anhydrite in belite. The mortar from it expanded after heat treatment at 90 °C and the addition of Na2SO4 or NaOH accelerated and increased this expansion. The expansion occurred irrespective of the fact that the clinker contained only 3% of C3A, although the C4AF content was 13%. The second clinker with 2.6% SO3 contained mainly calcium langbeinite and expanded only when 2% of Na2SO4 was added. The SEM examination of the mortars revealed the presence of numerous bands of massive ettringite around sand grains. Agglomerates of cracked ettringite in cement gel were also present. In addition, microcracks were seen inside the darker C-S-H gel. The conclusion is that anhydrite forming inclusions in belite gives an expanding mortar after heat treatment at 90 °C independently of the tricalcium aluminate content. Such clinkers are not typical of industrial conditions. The expansion is caused by the bands of massive ettringite as well as its agglomerates present in the cement gel and nanometric ettringite in the C-S-H phase.  相似文献   

12.
Mixes of C-S-H and ettringite were synthesized in suspension systems and their equilibria were studied at 20 and 85 °C. Concentrations in solution (calcium, sulfate, aluminium) were measured and the mineralogical state of the systems was studied by means of X-ray diffraction. The equilibria between C-S-H and ettringite are described. The relative importance of sulfate bound to the C-S-H is evaluated. The kinetics of ettringite reprecipitation from a “C-S-H-ettringite” system at 85 °C placed at 20 °C are also evaluated.  相似文献   

13.
A practical alkali reactive aggregate-Beijing aggregate was used to test the long-term effectiveness of LiOH in inhibiting alkali-aggregate reaction (AAR) expansion. In this paper, the most rigorous conditions were so designed that the mortar bars had been cured at 80 °C for 3 years after being autoclaved for 24 h at 150 °C. At this condition, LiOH was able to inhibit long-term alkali-silica reaction (ASR) expansion effectively. Not only was the relationship between molar ratio of n(Li)/n(Na) and the alkali contents in systems established, but also the governing mechanism of such effects was studied by SEM.  相似文献   

14.
Concrete cylinders, 255 mm in diameter, were made with high- and low-alkali cements, a highly alkali-silica-reactive coarse aggregate, and subjected to various conditions at 38 °C: (1) immersion in 3% NaCl solution; (2) immersion in 6% NaCl solution; (3) humid air at 100% RH, and (4) 14-day cycles including 12 days in humid air, 2 days of drying, and 3 h in 6% NaCl solution. After 1 year, a number of cylinders were drilled to obtain dry powder samples from different depths, which were analyzed for total and soluble chloride and for soluble sodium and potassium. Concrete cores were also taken in a number of parapets and abutments, either exposed to deicing salts or not, on which chemical analyses were also performed on slices taken at different depths from the exposed surface. The results obtained suggest that making concrete with a low-alkali content is an effective way to prevent expansion due to alkali-silica reaction even for concretes exposed to seawater or deicing salts; this is attributed to the fact that the OH ion concentration in the pore solution, and then the pH, is decreased in the near-surface layers of concrete exposed to sodium chloride, which does not penetrate at depth in concrete.  相似文献   

15.
Dense cordierite ceramics were prepared from a sol mixture of alumina, silica, and magnesia, and the relationship between microstructure and thermal expansion was clarified for sinters with relative density greater than 97%. In the dense cordierite ceramics, submicrometer‐sized primary cordierite crystals aligned in the same crystal orientation and constituted the domain structure. We discovered that these domain structures could be easily observed by optical polarizing microscopy and quantified by digital image analysis of the photographs. The occurrence of microcracks between domains larger than 40 μm was induced by the thermal expansion anisotropy of the cordierite crystal axes. As a result, the mean thermal expansion coefficient of the cordierite ceramics decreased to 0.4 × 10?6 K?1 from the average value of the crystal axes of 1.7 × 10?6 K?1. This lower thermal expansion coefficient could be theoretically explained by partial microcracking.  相似文献   

16.
Electrochemical chloride extraction: efficiency and side effects   总被引:1,自引:0,他引:1  
Some specimens of reinforced concrete cast with an alkali-resistant aggregate, previously maintained in a solution of NaCl, were subjected to an electrochemical chloride extraction (ECE). The chloride profiles before and after treatment were determined. Likewise, alkali ions profiles before and after treatment were determined. After treatment, some specimens were stored in a controlled atmosphere (60 °C and 100% RH) in order to accelerate the alkali-silica reaction, if any.Results of chloride content after treatment show that about 40% of the initial chloride is removed within 7 weeks. About one-half of the chloride close to steel was removed, but at the same time, significant amounts of alkali ions were observed around the steel.Microstructural observations by scanning electron microscopy (SEM) showed that after treatment, new cementitious phases containing higher concentrations of sodium, aluminum and potassium were formed. Moreover, alkali-silica gel was observed in the specimens stored at 60 °C and 100% RH. It may be possible that the ECE accumulates locally high amounts of alkali ions that stimulate the alkali-silica reaction even though the concrete contained nominally inert siliceous aggregates. The specimen expansions were not recorded, but no cracks were observed.  相似文献   

17.
Sulfate-generated deteriorations in normal portlant cement concretes include expansion, cracking, loss of strength and stiffness, and sometimes disintegration. The chemical phenomenon of ettringite formation as a result of reaction between sulfate water and hydration products of portland cement does not adequately explain all the physical manifestations of the sulfate attack. Furthermore, ettringite which causes expansions in some cases is apparently responsible for high strength in other cases. The published literature does not contain satisfactory explanations for this anomalous behavior of ettringite. In this paper, the author has attempted to provide answers to some of the questions.  相似文献   

18.
Development of non-destructive methods, developed specifically for assessing the damage induced by alkali-silica reaction (ASR) in concrete structures, is needed in order to carry out a systematic evaluation of the concrete condition. The aim of this study is to monitor the evolution of the ASR-damage in laboratory with concrete samples with ultrasonic pulse velocity and attenuation of ultrasonic waves methods. For this study, results of both methods were compared with expansion and mass variation.One reactive concrete mixture was made with reactive aggregate, and one other mixture, incorporating non-reactive aggregate, was made as a control. Specimens were kept at 38 °C in a 1 mol l− 1 NaOH solution to accelerate the reaction. Attenuation of transmitted ultrasonic waves appeared to be more appropriate for the evaluation of ASR-damage compared with pulse velocity. The attenuation of accelerated reactive concrete cylinders increased by 90% after 1 year while it increased by 40% for the non-reactive concrete used as a control. Major part of the attenuation increase in the non-reactive concrete is due to liquid absorption.This work suggests that in-situ non-destructive techniques based on ultrasonic wave attenuation, like ultrasonic attenuation tomography, should be developed in order to evaluate the development of ASR in concrete structures. Petrographic examination confirmed that damage to concrete is associated with ASR.  相似文献   

19.
After being subjected to different elevated heating temperatures, ranging between 105 °C and 1200 °C, the compressive strength, flexural strength, elastic modulus and porosity of concrete reinforced with 1% steel fibre (SFRC) and changes of colour to the heated concrete have been investigated.The results show a loss of concrete strength with increased maximum heating temperature and with increased initial saturation percentage before firing. For maximum exposure temperatures below 400 °C, the loss in compressive strength was relatively small. Significant further reductions in compressive strength are observed, as maximum temperature increases, for all concretes heated to temperatures exceeding 400 °C. High performance concretes (HPC) start to suffer a greater compressive strength loss than normal strength concrete (NSC) at maximum exposure temperatures of 600 °C. It is suggested that HPC suffers both chemical decomposition and pore-structure coarsening of the hardened cement paste when C-S-H starts to decompose at this high temperature. Strengths for all mixes reached minimum values at 1000 or 1100 °C. No evidence of spalling was encountered. When steel fibres are incorporated, at 1%, an improvement of fire resistance and crack [F.M. Lea, Cement research: retrospect and prospect. Proc. 4th Int. Symp. On the Chemistry of Cement, pp. 5-8 (Washington, DC, 1960).] resistance as characterized by the residual strengths were observed. Mechanical strength results indicated that SFRC performs better than non-SFRC for maximum exposure temperatures below 1000 °C, even though the residual strength was very low for all mixes at this high temperature. The variations with colour, which occured, are associated with maximum temperatures of exposure.  相似文献   

20.
Ettringite formation in portland cement concretes can be responsible for both deleterious and beneficial phenomena. Several hypotheses on the mechanism of expansion associated with ettringite formation are reviewed, and a new hypothesis is proposed. Experimental evidence is presented in support of the new hypothesis. It is shown that in the presence of lime the nature of ettringite formed is colloidal, and not long lath-like crystals. It is proposed that colloidal ettringite is able to attract a large number of water molecules which cause interparticle repulsion, thus causing an overall expansion of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号