首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterized SiO2–TiO2 nano-hybrid particles, prepared using the sol–gel method, using high-resolution transmission microscopy. A few nanometer-ordered TiO2 anatase crystallites could be observed on the monodispersed SiO2 nanoparticle surface. The quantum size effect of the TiO2 anatase crystallites is attributed to the blue shift of the absorption band. The rough surface of the SiO2–TiO2 nano-hybrid particles was derived from the developed growth planes of the TiO2 anatase crystallites, grown from fully hydrolyzed Ti alkoxide that did not react with acetic acid during the crystallization process at 600°C thermal annealing.  相似文献   

2.
3.
Silver and gold nanoparticles were synthesized by the sol–gel process in SiO2, TiO2, and ZrO2 thin films. A versatile method, based on the use of coordination chemistry, is presented for stabilizing Ag+ and Au3+ ions in sol–gel systems. Various ligands of the metal ions were tested, and for each system it was possible to find a suitable ligand capable of stabilizing the metal ions and preventing gold precipitation onto the film surface. Thin films were prepared by spin-coating onto glass or fused silica substrates and then heat-treated at various temperatures in air or H2 atmosphere for nucleating the metal nanoparticles. The Ag particle size was about 10 nm after heating the SiO2 film at 600°C and the TiO2 and ZrO2 films at 500°C. After heat treatment at 500°C, the Au particle size was 13 and 17 nm in the TiO2 and ZrO2 films, respectively. The films were characterized by UV–vis optical absorption spectroscopy and X-ray diffraction, for studying the nucleation and the growth of the metal nanoparticles. The results are discussed with regard to the embedding matrix, the temperature, and the atmosphere of the heat treatment, and it is concluded that crystallization of TiO2 and ZrO2 films may hinder the growth of Ag and Au particles.  相似文献   

4.
Differences in the Raman spectra of various heat-treated TiO2· SiO2 glasses could be related to their thermal and chemical histories. For instance, while rutile could be detected in batch-prepared glasses heated at 1100°C, only α-cristobalite could be detected in heat-treated devitrified flame-prepared glasses with comparative TiO2-concentrations. Thermal expansion coefficients increased for batch-prepared glasses upon heat treatment due to exsolution of rutile from the glasses. Earlier work had noted similar behavior at lower temperatures due to exsolution of anatase.  相似文献   

5.
Structural changes in sol–gel-derived TiO2–SiO2 coatings were found to proceed in an environment of high temperature and high humidity as follows: (1) dissociation of Si–O–Ti bonds in the coating by the attack of water vapor, (2) formation of Ti–O–Ti bonds, and (3) nucleation and growth of anatase TiO2. The coating obtained with the addition of poly(ethylene glycol), PEG, reacts with water vapor more easily than the coating obtained without PEG, since the former is more porous than the latter due to the decomposition of PEG during heat treatment.  相似文献   

6.
Cu-metal-doped glass films having a Cu:Si atomic ratio of 0.05 ± 0.002 were successfully prepared by a sol-gel method using a dipping technique. The appearance of surface plasmon of Cu metal at about 570 nm was observed after heat treatment at or above 700°C. The third-order nonlinear susceptibility (x3) was as high as 5.0 × 10–8 esu at 570 nm.  相似文献   

7.
Uniform CeO2 / TiO2 composite nanoparticles with different Ce/Ti molar ratios have been successfully synthesized via the sol–gel method. The samples were characterized using differential thermal analysis (DTA), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The surface state analysis by means of X-ray photoelectron spectroscopy (XPS) shows that the Ti element mainly exists as a chemical state of Ti4+, while the Ce element exists as a mixture of Ce3+ and Ce4+ oxidation states. The photocatalytic degradation of methyl orange (MeO) in CeO2 / TiO2 suspension was investigated. The results indicate that the CeO2/TiO2 nanocomposites show higher photocatalytic activity than pure TiO2. Photodegradation of MeO can be improved by increasing the Ce/Ti molar ratio in the initial 15 min.  相似文献   

8.
The phase relations of the systems ZrO2–TiO2 and ZrO2–TiO2–SiO2 were investigated. X-ray diffraction techniques served as the principal means of analysis. The binary system ZrO2–TiO2 was found to be one of partial solid solutions with no intermediate compounds. A eutectic point was found to exist at 50 to 55 weight % ZrO2 and 1600°C. A preliminary investigation of the ternary system ZrO2–TiO2–SiO2, although not extensive, resulted in a better understanding of this system, with a fairly accurate location of some of its boundary lines. A eutectic point was located at 2% ZrO2, 10% TiO2, and 88% SiO2 at approximately 1500°C.  相似文献   

9.
A furnace for use in conjunction with the X-ray spectrometer was developed which was capable of heating small powdered specimens in air to temperatures as high as 1850°C. This furnace was also used for the heating and quenching of specimens in air from temperatures as high as 1850°C. An area of two liquids coexisting between 20 and 93 weight % TiO2 above 1765°± 10°C. was found to exist in the system TiO2–SiO2, which is in substantial agreement with the previous work of other investigators. The area of immiscibility in the system TiO2–SiO2 was found to extend well into the system TiO2–ZrO2–SiO2. The two liquids were found to coexist over a major portion of the TiO2 (rutile) primary-phase area with TiO2 (rutile) being the primary crystal beneath both liquids. The temperature of two-liquid formation in the ternary was found to fall about 80°C. with the first additions of ZrO2 up to 3%. With larger amounts of ZrO2 the change in the temperature of the boundary of the two-liquid area was so slight as to be within the limits of error of the temperature measurement. Primary-phase fields for TiO2 (rutile), tetragonal ZrO2, and ZrTiO4 were found to exist in the system TiO2–ZrO2–SiO2. SiO2 as high cristobalite is known to exist in the system TiO2–ZrO2–SiO2.  相似文献   

10.
Ceramic photonic crystals with diamond structure were fabricated using stereolithography and successive sintering. The green body of an epoxy resin incorporating 10 vol% TiO2–SiO2 was formed by stereolithography and then heated in air at 1100°–1400°C for 2 h. The sintered products maintained the diamond structure with a linear shrinkage ratio of about 57% and a porosity of 38%. The ceramic photonic crystal with eight unit cells showed a photonic band gap at the center frequency of 23.5 GHz. This fabrication method of three-dimensional (3D) ceramic photonic crystals is applicable to other 3D structural ceramics and does not require any molding techniques.  相似文献   

11.
Thin films of titania have been prepared by spin coating on fused silica, Si(100), and rutile(110), starting with a sol–gel process. The alkoxide solution was chelated with diisopropanolamine, and the resulting precursor solution was hydrolyzed prior to coating. Oriented rutile films were obtained on fused silica and Si(100), while epitaxially oriented film was formed on rutile (110). X-ray diffraction results indicated that the as-deposited films transformed to rutile via anatase with increasing temperature. The phase transformation temperature was found to be dependent on the substrate, and it was in general higher on the substrates than that observed for the gel powder. Microstructural studies revealed that these films consisted of finely dispersed grains of 0.05 to 0.15 μm in size.  相似文献   

12.
Er-doped Al2O3–SiO2 (1/9 in mol ratio of Al2O3/SiO2) thin films were prepared by using a modified sol–gel process. The modified process entails the precipitation and digestion of Er(OH)3, obtained from the reaction between Er ions and NH4OH in solution. Thin films were deposited on Si wafers by using a spin coating technique (3000 rpm) and the coated films were heat treated at different temperatures for 1 h in an oxygen-purged furnace. All the films were structurally characterized by the X-ray diffraction technique using Cu K α radiation. Refractive indices and the morphologies of the films were studied using a spectroscopic phase modulated ellipsometer and atomic force microscopy, respectively. It was observed that the films were crack free and of about 0.4 μm thickness in a single spin coating and both the lifetime and the photoluminescence intensity of Er ions increased with increasing the annealing temperature. The luminescence properties of the Er-doped Al2O3–SiO2 made by a conventional and our modified doping process were compared and discussed from the stand point of peak intensities and lifetimes as a function of annealing temperatures. It is to be noted here that our modified process was found to be more effective in reducing the clustering of Er ions in Al2O3–SiO2 materials as compared to that of the conventional method.  相似文献   

13.
Anatase (TiO2)/silica (SiO2: 23.9–27.7 mol%) composite nanoparticles were directly synthesized from (i) the reaction of titanyl sulfate (TiOSO4) and sodium metasilicate (Na2SiO3) under mild hydrothermal conditions, (ii) the acidic precursor solutions of TiOSO4 and tetraethylorthosilicate (TEOS) by thermal hydrolysis, and (iii) the metal alkoxides, i.e., tetraisopropoxide (TTIP) and TEOS, by the sol–gel method. Their photocatalytic activities were evaluated by measurements of the relative concentration of methylene blue after UV irradiation. The as-prepared TiO2/SiO2 composite nanoparticles showed far more improved photocatalytic activity than the pure anatase-type TiO2. The composite nanoparticles formed from (i) TiOSO4 and Na2SiO3 as well as those from (ii) TiOSO4 and TEOS showed fairly good photocatalytic activity, and it was better than that of those synthesized from (iii) the metal alkoxides, which was suggested to be due to the difference in crystallinity of the anatase.  相似文献   

14.
The effect of TiO2/SiO2 addition on the grain growth of alumina was reinvestigated. TiO2 promoted the grain growth, but there was no abnormal grain growth. However, codoping of TiO2 and SiO2 resulted in a duplex microstructure consisting of large platelike grains, ∼800 μm long and ∼100 μm thick, and fine matrix grains. The observed anisotropic abnormal grain growth was explained in terms of liquid formation during heat treatment.  相似文献   

15.
By a progressive weight percent substitution of TiO2 for SiO2 at various rations of concentration of K2O and PbO, the entire region of glass formation in the quaternary system K2O–PbO–SiO2–TiO2 was covered with 51 glass compositions. The properties of these glasses were determined and studied with respect to the role of TiO2 in the system. The results indicated that the dielectric constant increased progressively with increasing TiO2 concentration whereas the dissipation factor showed an overall decrease, when measured at 1 Mc and 25°C. Density and the refractive index increased progressively with increasing TiO2 concentration but deviated from the additive relation. Chemical durability, expansivity, and softening temperature vs. composition curves showed definite inflections. The effect of TiO2 on oxygen packing indicated that Ti4+ strengthens the network in lower concentrations and weakens the network in higher concentrations in this system. It appears to be likely that Ti4+ changes its coordination number form 4 to 6.  相似文献   

16.
Microstructural changes caused by doping α-Al2O3 with small amounts of SiO2 and TiO2 added singly or together were investigated. When they were sintered at 1450°C for 120 min, singly doped samples developed equiaxed microstructures, but codoped material developed an anisotropic microstructure that contained platelike grains with an average aspect ratio of 3.4. The development of anisotropy thus resulted from a cooperative effect of silicon and titanium. Amorphous material was present at most grain boundaries in the silicon-doped sample. In the codoped sample, only boundaries that exhibited a basal facet were penetrated by amorphous material. Energy dispersive X-ray spectroscopy analysis showed strong titanium enrichment at the edges of platelets. Additional experiments demonstrated that the volume fraction of highly anisotropic platelike grains interspersed with equiaxed grains could be adjusted by using varying amounts of titanium with a constant amount of silicon content. The fracture toughnesses of such materials increased as the structure became more anisotropic.  相似文献   

17.
NiAl2O4/SiO2 and Co2+-doped NiAl2O4/SiO2 nanocomposite materials of compositions 5% NiO – 6% Al2O3– 89% SiO2 and 0.2% CoO – 4.8% NiO – 6% Al2O3– 89% SiO2, respectively, were prepared by a sol–gel process. NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals were grown in a SiO2 amorphous matrix at around 1073 K by heating the dried gels from 333 to 1173 K at the rate of 1 K/min. The formations of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in SiO2 amorphous matrix were confirmed through X-ray powder diffraction, Fourier transform infrared spectroscopy, differential scanning calorimeter, transmission electron microscopy (TEM), and optical absorption spectroscopy techniques. The TEM images revealed the uniform distribution of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in the amorphous SiO2 matrix and the size was found to be ∼5–8 nm.  相似文献   

18.
The influence of co-additions of crystalline TiO2 and SiO2 fillers (10 wt% addition in total) to BaO–ZnO–B2O3–SiO2 glass on resultant properties was investigated from the viewpoint of applying the material to the barrier ribs of plasma display panels. The substitution of SiO2 for TiO2 reduced the dielectric constant significantly, while it maintained high optical reflectance and appropriate coefficient of thermal expansion (CTE) in the case when TiO2 alone was used. A 5–7.5 wt% SiO2 addition with 2.5–5 wt% TiO2 under the constraint of 10 wt% total fillers demonstrated an optical reflectance of about 55%, a CTE of about 8.3 × 10−6 K−1 (compatible with glass panels), and a dielectric constant of about 7.5, which are promising properties for the barrier rib application.  相似文献   

19.
Nucleation and crystallization kinetics of fresnoite (Ba2TiSi2O8) crystals in BaO–TiO2–SiO2 glasses have been explored for dielectric applications. The volume fractions crystallized at different temperatures and times were tracked by XRD analysis. The activation energy of crystallization was estimated from DTA results to be about 528 kJ/mol, which is consistent with the value obtained by XRD results. The Avrami parameter values calculated at different temperatures from DTA results were found to be between 3.2 and 3.9, indicating that the growth is three dimensional and the mechanism of growth is interface-controlled. Additionally, because of compositional similarities, the dielectric contrast between the glass (ɛr∼15) and the resulting glass–ceramic (ɛr∼18) was minimal.  相似文献   

20.
PbTiO3(PT)-PbO-SiO2 glass-ceramic thin films were pro-duced by a sol-gel process. The crystallization of PT oc-curred at ∼700°C and was higher than that in PT-PbO-B2 O3 sol-gel glass-ceramics. A pinhole-free thin film was obtained by a rapid thermal annealing process when the designed glass-forming phase content in the thin film was >24 vol%. The measured dielectric constants of the films fairly agreed with the predicted values, based on a parallel mixing model. The dielectric constant was 219 and the di-electric loss was 0.04 in the 0.6PT-0.4(PbO-SiO2) film that was fired at 700°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号