首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J.  M.  F.   《Integration, the VLSI Journal》2007,40(4):503-515
The defect characterization of sequential devices and circuits, implemented by molecular quantum-dot cellular automata (QCA), is analyzed in this paper. A RS-type flip–flop is first introduced; this flip–flop takes into account the timing issues associated with the adiabatic switching of this technology and its requirements. It is then shown that a D-type flip–flop can be constructed with an embedded QCA wire which extends over multiple clocking zones. The logic-level characterization of both flip–flop devices is provided. A single additional and missing cell defect model is assumed for molecular implementation. For sequential circuits, defect characterization is pursued. It is shown that defects affect the functionality of basic QCA devices, resulting mostly in unwanted inversion and majority voter acting as a wire at logic level. In this paper, it is shown that a device-level characterization of the defects and faults can be consistently extended to a circuit-level analysis.  相似文献   

2.
The emergence of Quantum-dot Cellular Automata (QCA) has resulted in being identified as a promising alternative to the currently prevailing techniques of very large scale integration. QCA can provide low-power nanocircuit with high device density. Keeping aside the profound acceptance of QCA, the challenge that it is facing can be quoted as susceptibility to high error rate. The work produced in this article aims towards the design of a reliable universal logic gate (r-ULG) in QCA (r-ULG along with the single clock zone and r-ULG-II along with multiple clock zones). The design would include hybrid orientation of cells that would realise majority and minority, functions and high fault tolerance simultaneously. The characterisation of the defective behaviour of r-ULGs under different kinds of cell deposition defects is investigated. The outcomes of the investigation provide an indication that the proposed r-ULG provides a fault tolerance of 75% under single clock zone and a fault tolerance of 100% under dual clock zones. The high functional aspects of r-ULGs in the implementation of different logic functions successfully under cell deposition defects are affirmed by the experimental results. The high-level logic around the multiplexer is synthesised, which helps to extend the design capability to the higher-level circuit synthesis.  相似文献   

3.
《Microelectronics Journal》2014,45(11):1522-1532
The quantum-dot cellular automata have emerged as one of the potential computational fabrics for the emerging nanocomputing systems due to their ultra-high speed and integration density. On the other hand, reversible computing promises low power consuming circuits by nullifying the energy dissipation during the computation. This work targets the design of a reversible arithmetic logic unit (RALU) in the quantum-dot cellular automata (QCA) framework. The design is based on the reversible multiplexer (RM) synthesized by compact 2:1 QCA multiplexers introduced in this paper. The proposed reversible multiplexer is able to achieve 100% fault tolerance in the presence of single missing or additional cell defects in QCA layout. Furthermore, the advantage of modular design of reversible multiplexer is shown by its application in synthesizing the RALU with separate reversible arithmetic unit (RAU) and reversible logic unit (RLU). The RALU circuit can be tested for classical unidirectional stuck-at faults using the constant variable used in this design. The experimentation establishes that the proposed RALU outperforms the conventional reversible ALU in terms of programming flexibility and testability.  相似文献   

4.
Quantum-dot cellular automata (QCA) is increasingly valued by researchers because of its nanoscale size and very low power consumption.However,in the manufacture of nanoscale devices prone to various forms of defects,which will affect the subsequent circuits design.Therefore,fault-tolerant QCA architectures have become a new research direction.The purpose of this paper is to build a novel fault-tolerant three-input majority gate based on normal cells.Compared with the previous structures,the majority gate shows high fault tolerance under single-cell and double-cell omission defects.In order to examine the functionality of the proposed structure,some physical proofs under single cell missing defects are provided.Besides,two new fault-tolerant decoders are constructed based on the proposed majority gate.In order to fully demonstrate the performance of the proposed decoder,the previous decoders were thoroughly compared in terms of fault tolerance,area and delay.The result shows that the proposed design has a good fault tolerance characteristic,while the performance in other aspects is also quite good.  相似文献   

5.
An extensive literature exists on the mathematical characterization of reversible logic. However, the possible technological basis of this computing paradigm still remains unsolved. In this paper, quantum-dot cellular automata (QCA) is investigated for testable implementations of reversible logic. Two new reversible gates (referred to as QCA1 and QCA2) are proposed. These gates are compared (in terms of delay, area and logic synthesis) with other reversible gates (such as Toffoli and Fredkin) for QCA implementation. Due to the expected high error rates in nano-scale manufacturing, testing of nano devices, including QCA, has received considerable attention. The focus of this paper is on the testability of a one-dimensional array made of QCA reversible gates, because the bijective nature of reversible gates significantly facilitates testing of arrays. The investigation of testability relies on a fault model for molecular QCA that is based on a single missing/additional cell assumption. It is shown that C-testability of a 1D reversible QCA gate array can be guaranteed for single fault. Theory and circuit examples show that error masking can occur when multiple faults are considered.  相似文献   

6.
In this paper, different circuits of Quantum-dot Cellular Automata (QCA) are proposed for the so-called coplanar crossing. Coplanar crossing is one of the most interesting features of QCA because it allows for mono-layered interconnected circuits, whereas CMOS technology needs different levels of metalization. However, the characteristics of the coplanar crossing make it prone to malfunction due to thermal noise or defects. The proposed circuits exploit the majority voting properties of QCA to allow a robust crossing of wires on the Cartesian plane. This is accomplished using enlarged lines and voting. A Bayesian Network (BN) based simulator is utilized for evaluation; results are provided to assess robustness in the presence of cell defects and thermal effects. The BN simulator provides fast and reliable computation of the signal polarization versus normalized temperature. Simulation of the wire crossing circuits at different operating temperatures is provided with respect to defects and a quantitative metric for performance under temperature variations is proposed and assessed.  相似文献   

7.
Quantum Cellular Automata (QCA) is a novel and attractive method which enables designing and implementing high-performance and low-power consumption digital circuits at nano-scale. Since memory is one of the most applicable basic units in digital circuits, having a fast and optimized QCA-based memory cell is remarkable. Although there are some QCA structures for a memory cell in the literature, however, QCA characteristics may be used in designing a more optimized memory cell than blindly modeling CMOS logics in QCA. In this paper, two improved structures have been proposed for a loop-based Random Access Memory (RAM) cell. In the proposed methods, the inherent capabilities of QCA, such as the programmability of majority gate and the clocking mechanism have been considered. The first proposed method enjoys smaller number of cells and the wasted area has been reduced compared to traditional loop-based RAM cell. For the second proposed method, the memory access time has been duplicated in presence of smaller number of cells. Irregular placement of QCA cells in a QCA layout makes its realization troublesome. So, we have proposed alternative versions of the proposed methods that exploit regularity of clock zones in design and have compared them to each other. QCA designer has been employed for simulation of the proposed designs and proving their validity.  相似文献   

8.
This paper describes a line-based, quantum-dot cellular automata (QCA) memory cell design that is synchronized by a dual-phase clocking scheme. In line-based QCA memory cells, data bits are stored oscillating along QCA lines. The best known line-based memory cell implementation requires three new clocking zones in addition to the four clocking zones defined by the conventional QCA clocking scheme and utilizes three parallel clocking zones per cell. The proposed memory cell requires only two new clocking zones and utilizes two parallel clock zones per memory cell; permitting less CMOS circuity for clock design and denser QCA system implementations. Furthermore, read throughput is improved to one operation per clock cycle (from one read per two clock cycles). Simulations with the $hbox{tt QCADesigner}$ simulator are performed to verify the functionality of the proposed QCA memory cell.   相似文献   

9.
量子元胞自动机(QCA)是一种新颖的纳米技术,该技术不再通过电流或电压而是基于场相互作用进行信息的计算和传递。首先,综述了两种量子元胞自动机(EQCA和MQCA)器件的计算原理、基本逻辑门和时钟。指出了QCA元胞构成的不同线结构可在相同层交叉传递信号而不受影响。然后,进一步总结了制备QCA器件和功能阵列或电路的实验方法和材料,得出MQCA器件和分子EQCA器件的发展将使该器件逐步达到实际应用水平的结论。详细讨论了目前QCA器件和电路(尤其是存储单元结构)研究取得的重要进展以及面临的问题。提出了QCA器件未来理论和应用研究中的开放课题和方向。  相似文献   

10.

Recently, Quantum-dot Cellular Automata (QCA) has appeared as a noteworthy substitution to CMOS technology. It contains ultra-high-velocity, efficient energy, low area for design circuits, one potential computational fabric for Nano computing systems, and integration density. On the other hand, fault-tolerant circuits promise reliability circuits by computation redundancy cells. This work targets to form two designs of fault-tolerant 2:1 multiplexer in the QCA framework. This proposed QCA multiplexer designs use cell redundancy on the wire, NOT gates, and majority gates. The coplanar structures for the proposed 2:1 QCA fault-tolerant multiplexers are provided and operated based on cell interactions. Four types of faults, cell misalignment, cell missing, cell displacement, and extra cell, are essential in analyzing the fault attributes. The proposed fault-tolerant multiplexers can attain 100% fault-tolerance while extra cell deficiencies or single missing exist in the layout of the QCA. The simulation outcomes reached by the software, QCA Designer 2.0.3, approve that the suggested multiplexers work correctly and can be utilized in QCA technology as a high-performance schematization. The outcomes show that the proposed construct outperforms any prior schematization.

  相似文献   

11.
针对量子元胞自动机电路中出现的元胞移位等元胞缺陷,介绍了基于QCADesigner的元胞缺陷分析,得出了特定结构的容错范围。对于制造过程出现的单电子故障,分析了不同输入时单电子故障对传输线和反相器的影响。对于制造过程中出现的漂移电荷缺陷,分析了这些缺陷对传输线的影响。通过改变元胞与传输线之间的距离,研究了QCA传输线之间的串扰问题,得出了其容错范围。最后对RS触发器中出现的元胞缺陷采用测试序列进行了分析研究,从而为进一步研究QCA电路的缺陷提供了依据和方向。  相似文献   

12.
《Microelectronics Journal》2014,45(2):239-248
Design of parity preserving logic based on emerging nanotechnology is very limited due to present technological limitation in tackling its high error rate. In this work, Quantum-dot cellular automata (QCA), a potential alternative to CMOS, is investigated for designing easily testable logic circuit. A novel self-testable logic structure referred to as the testable-QCA (t-QCA), using parity preserving logic, is proposed. Design flexibility of t-QCA then evaluated through synthesis of standard functions. The programmability feature of t-QCA is utilized to implement an ALU, realizing six important functions. Although the parity preservation property of t-QCA enables concurrent detection of permanent as well as the transient faults, an augmented test logic circuit (TC) using QCA primitives has been introduced to cover the cell defects in nanotechnology. Experimental results establish the efficiency of the proposed design that outperforms the existing technologies in terms of design cost and test overhead. The achievement of 100% stuck-at fault coverage and the 100% fault coverage for single missing/additional cell defects in QCA layout of the t-QCA gate, address the reliability issues of QCA nano-circuit design.  相似文献   

13.
This paper proposes a SPICE model development methodology for quantum-dot cellular automata (QCA) cells and presents a SPICE model for QCA cells. The model is validated by simulating the basic logic gates such as inverter and majority voter. The proposed model makes it possible to design and simulate QCA combinational circuits and hybrid circuits of QCA and other NANO devices using SPICE. In the second half part of the paper, SET and QCA co-design methodology is proposed and SET is used as a readout interface of the QCA cell array. The SET and QCA hybrid circuit is a promising nano-scale solution.  相似文献   

14.
In this paper, we present a test generation framework for quantum cellular automata (QCA) circuits. QCA is a nanotechnology that has attracted recent significant attention and shows promise as a viable future technology. This work is motivated by the fact that the stuck-at fault test set of a circuit is not guaranteed to detect all defects that can occur in its QCA implementation. We show how to generate additional test vectors to supplement the stuck-at fault test set to guarantee that all simulated defects in the QCA gates get detected. Since nanotechnologies will be dominated by interconnects, we also target bridging faults on QCA interconnects. The efficacy of our framework is established through its application to QCA implementations of MCNC and ISCAS'85 benchmarks that use majority gates as primitives  相似文献   

15.
The large amount of secondary effects in complementary metal–oxide–semiconductor technology limits its application in the ultra-nanoscale region. Circuit designers explore a new technology for the ultra-nanoscale region, which is the quantum-dot cellular automata (QCA). Low-energy dissipation, high speed, and area efficiency are the key features of the QCA technology. This research proposes a novel, low-complexity, QCA-based one-bit digital comparator circuit for the ultra-nanoscale region. The performance of the proposed comparator circuit is presented in detail in this paper and compared with that of existing designs. The proposed QCA structure for the comparator circuit only consists of 19 QCA cells with two clock phases. QCA Designer-E and QCA Pro tools are applied to estimate the total energy dissipation. The proposed comparator saves 24.00% QCA cells, 25.00% cell area, 37.50% layout cost, and 78.11% energy dissipation compared with the best reported similar design.  相似文献   

16.
Considering the limitations of CMOS technology, the Quantum-dot Cellular Automata (QCA) is emerging as one of the alternatives for Integrated Circuit (IC) Technology. A lot of work is being carried out for design, fabrication and testing of QCA circuits. In this paper, we have worked on defect analysis, fault models development and deriving various properties for QCA Majority Voter (MV) to effectively generate the test patterns for QCA circuits. It has been shown that unlike CMOS technology, single missing cell consideration is not enough for QCA technology. We have presented that the Multiple Missing Cell (MMC) defect, which is very natural at nanoscale, causes the sizable difference in functionality compared to Single Missing Cell consideration described in literature, and hence, must be considered while test generation. The proposed MMC is supported by exhaustive simulation results as well as kink energy based mathematical analysis. Further, Verilog fault models are proposed which can be used for the functional, timing verification and activation of faults caused by MMC defect. The effect of MMC on output is analyzed in stand-alone MV as well as when MV is a part of circuit. At the end, we have proposed the test properties of MV when being used as MV itself, as AND gate or OR gate. These properties may be further helpful in development of test generation algorithms.  相似文献   

17.
Quantum-dot cellular automata (QCA) is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor (CMOS) technology. The existence of defects cannot be ignored, considering the fabrication of QCA devices at the molecular level where it could alter the functionality. Therefore, defects in QCA devices need to be analyzed. So far, the simulation-based displacement defect analysis has been presented in the literature, which results in an increased demand in the corresponding mathematical model. In this paper, the displacement defect analysis of the QCA main primitive, majority voter (MV), is presented and carried out both in simulation and mathematics, where the kink energy based mathematical model is applied. The results demonstrate that this model is valid for the displacement defect in QCA MV.  相似文献   

18.
一位QCA数值比较器的可靠性研究   总被引:2,自引:2,他引:0  
针对量子元胞自动机电路中存在的元胞移位、元胞未对准、元胞遗漏、元胞旋转等固有缺陷,采用概率转移矩阵方法建立了一位QCA数值比较器的可靠性模型,并对其可靠性进行了深入分析。对于不同的输入,分别比较了各组成元件在同样的故障概率水平下对整体可靠性(正确输出的概率)的不同影响。仿真结果表明,在所有的输入情况下传输线始终是影响其可靠性的主要因素,从而确定了传输线在该数值比较器中的重要性,进而为大规模QCA数值比较器的设计以及可靠性的提高提供了依据。  相似文献   

19.
汪艳贞  吴南健 《半导体学报》2005,26(13):261-264
研究了量子点分布的误差对镜像电荷量子元胞自动机(QCA)的影响. 镜像电荷QCA每个元胞中的四个量子点是被严格限制在正方形元胞的四个角上的,考虑到现有的量子点生长技术,量子点偏离理想位置的情况是不可避免的. 模拟了在正态分布误差存在时镜像电荷QCA的工作情况,并估算了在较小的介电常数下镜像电荷QCA可能达到的最高工作温度. 仿真结果表明正态分布标准差sigma小于0.1时,镜像电荷QCA可以正常工作,同时缩小QCA的元胞尺寸可以使镜像电荷QCA的最高工作温度达到室温以上.  相似文献   

20.
This article describes the design of adder units on quantum-dot cellular automata (QCA) nanotechnology, which promises very dense circuits and high operating frequencies, using a single homogeneous layer of the basic cells. We construct pipelined structures without the earlier noise problems, avoided by careful clocking organization, and the modular layouts are verified with the QCADesigner coherence vector simulation. Our designs occupy only a fraction of area compared to the previous noise rejecting design, while having also superior performance, and it is shown that the wiring overhead of the arithmetic circuits on QCA grows with square-law dependence on the operand word length. Power analysis at the fundamental Landauer’s limit shows, that the operating frequencies will indeed be bound by the energy dissipated in information erasure: under irreversible operation, the clock rates of the adder units on molecular QCA are only tens of gigahertz, while the switching speed of the technology is in the terahertz regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号