首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultra-potent opioid analgesic, etorphine, elicits naloxone-reversible, dose-dependent inhibitory effects, i.e., shortening of the action potential duration (APD) of naive and chronic morphine-treated sensory dorsal root ganglion (DRG) neurons, even at low (pM-nM) concentrations. In contrast, morphine and most other opioid agonists elicit excitatory effects, i.e., APD prolongation, at these low opioid concentrations, require much higher (ca. 0.1-1 microM) concentrations to shorten the APD of naive neurons, and evoke only excitatory effects on chronic morphine-treated cells even at high > 1-10 microM concentrations. In addition to the potent agonist action of etorphine at mu-, delta- and kappa-inhibitory opioid receptors in vivo and on DRG neurons in culture, this opioid has also been shown to be a potent antagonist of excitatory mu-, delta- and kappa-receptor functions in naive and chronic morphine-treated DRG neurons. The present study demonstrates that the potent inhibitory APD-shortening effects of etorphine still occur in DRG neurons tested in the presence of a mixture of selective antagonists that blocks all mu-, delta- and kappa-opioid receptor-mediated functions, whereas addition of the epsilon (epsilon)-opioid-receptor antagonist, beta-endorphin(1-27) prevents these effects of etorphine. Furthermore, after markedly enhancing excitatory opioid receptor functions in DRG neurons by treatment with GM1 ganglioside or pertussis toxin, etorphine shows excitatory agonist action on non-mu-/delta-/kappa-opioid receptor functions in these sensory neurons, in contrast to its usual potent antagonist action on mu-, delta- and kappa-excitatory receptor functions in naive and even in chronic morphine-treated cells which become supersensitive to the excitatory effects of mu-, delta- and kappa-opioid agonists. This weak excitatory agonist action of etorphine on non-mu-/delta-/kappa-opioid receptor functions may account for the tolerance and dependence observed after chronic treatment with extremely high doses of etorphine in vivo.  相似文献   

2.
We examined the effects of intrathecal (i.t.) selective opioid receptor agonists in alleviating mechanical and cold allodynia in spinally injured rats. Both DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin, a mu-opioid receptor agonist) and DPDPE ([D-Phe2,D-Phe5]-enkephalin, a delta-opioid receptor agonist) dose-dependently relieved the chronic allodynia-like behavior at doses selective for their respective receptors. The anti-allodynic effect of DAMGO and DPDPE was reversed by the selective mu- and delta-opioid receptor antagonists CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) and naltrindole, respectively. In contrast, the selective kappa-opioid receptor agonist U50488H did not alleviate the allodynia-like behavior, but rather enhanced it. The anti-nociceptive and anti-allodynic effect of i.t. DAMGO was blocked by U50488H. Thus, activation of spinal mu- and delta-, but not kappa-opioid receptors produced anti-allodynic effect in this model of central pain. Drugs which act selectively on opioid receptor subtypes may be useful in managing chronic central pain of spinal cord origin.  相似文献   

3.
A pre-embedding double immunostaining technique was used to determine the role of beta-endorphin in synapse, particularly in neurons with a postsynaptic membrane containing micro-1 or delta-1 opioid receptors. A small number of beta-endorphin immunoreactive axon terminals in the dorsal raphe nucleus was found to make direct synapses on micro-1 or delta-1 opioid receptor-immunoreactive dendrites, some of which showed immunostaining of their postsynaptic membranes, although with low frequencies. These results suggest that beta-endorphin can play a direct role through the micro-1 or delta-1 opioid receptors at synapses, but the main route would be through other opioid receptor at the synapse or even not through the synapse.  相似文献   

4.
We have recently reported that the antinociception induced by etorphine given i.c.v. is mediated in part by the stimulation of both mu- and epsilon-opioid receptors and the activation of both monoaminergic and opioidergic descending pain control systems. [Xu J. Y. et al. (1992) J. Pharmac. exp. Ther. 263, 246-252]. Since the opioid epsilon-receptor-mediated antinociception induced by beta-endorphin is mediated by the release of [Met]enkephalin and subsequent stimulation of delta-opioid receptors in the spinal cord, the present studies were designed to determine if beta-endorphin-like action is also involved in etorphine-induced antinociception. The tail-flick test was used to assess the antinociceptive response performed in male ICR mice. Etorphine at doses from 5 to 20 ng given i.c.v. produced a dose-dependent inhibition of the tail-flick response. The inhibition of the tail-flick response induced by etorphine given i.c.v. was antagonized by intrathecal pretreatment for 60 min with antiserum against [Met]enkephalin (10 microg), but not with antiserum against [Leu]enkephalin (10 microg) or dynorphin A (1-13) (10 microg). Desensitization of delta-opioid receptors in the spinal cord by intrathecal pretreatment with [Met]enkephalin (5 microg) for 60 min attenuated i.c.v. administered etorphine-induced tail-flick inhibition. However, intrathecal pretreatment with [Leu]enkephalin (5 microg) or dynorphin A (1-17) (0.1 microg) for 60 min did not attenuate i.c.v. administered etorphine-induced tail-flick inhibition. The results indicate that antinociception induced by etorphine given i.c.v. is mediated in part by the stimulation of the epsilon-opioid receptor at the supraspinal sites and by the release of [Met]enkephalin, which subsequently stimulates delta-opioid receptors in the spinal cord.  相似文献   

5.
Following the elucidation of the amino acid sequences of the mu-, delta- and kappa-opioid receptors, a new 'orphan opioid receptor' was cloned with a high degree of homology to the 'classical' opioid receptors. The endogenous opioid peptides show little or no activity at this new receptor; however, a novel endogenous peptide for the orphan opioid receptor has been isolated and sequenced. Here, Graeme Henderson and Sandy McKnight review recent findings on this new receptor and its endogenous ligand, and address the contentious issue of whether activation of this receptor results in hyperalgesia or analgesia.  相似文献   

6.
In order to gain further insight into the functional architecture of structurally related G protein-coupled receptors, the ORL1 (nociceptin) and opioid receptors, we have constructed chimeras of ORL1 and mu-, delta- and kappa-opioid receptors, and compared their binding and functional properties with those of the parent receptors. We find in particular that a ORL1-kappa-opioid (O-K) hybrid construct has retained high affinity for non-type-selective opiate ligands, and has acquired the ability to bind and respond to enkephalins and mu- and/or delta-opioid receptor-selective enkephalins analogs, thus behaving like a 'universal' opioid receptor. Most significantly however, whilst the ORL1 and kappa-opioid receptors display high binding preference (KD 0.1 vs. 100 nM) for their respective endogenous ligands, nociceptin and dynorphin A, the O-K chimeric receptor binds both nociceptin and dynorphin A, with high affinity (KD < 1 nM). Together, these data (i) add weight to the hypothesis that the extracellular loops of opioid receptors act as a filter for ligand selection, and (ii) demonstrate that different domains of the ORL1 and kappa-opioid receptors are involved in recognition of their endogenous peptide ligands.  相似文献   

7.
1. To investigate the effects of clozapine, an atypical antipsychotic, on the cloned mu-, delta- and kappa-opioid receptors and G-protein-activated inwardly rectifying K+ (GIRK) channel, we performed the Xenopus oocyte functional assay with each of the three opioid receptor mRNAs and/or the GIRK1 mRNA. 2. In the oocytes co-injected with either the delta- or kappa-opioid receptor mRNA and the GIRK1 mRNA, application of clozapine induced inward currents which were attenuated by naloxone, an opioid-receptor antagonist, and blocked by Ba2+, which blocks the GIRK channel. Since the opioid receptors functionally couple to the GIRK channel, these results indicate that clozapine activates the delta- and kappa-opioid receptors and that the inward-current responses are mediated by the GIRK channel. The action of clozapine at the delta-opioid receptor was more potent and efficacious than that at the kappa-opioid receptor. In the oocytes co-injected with the mu-opioid receptor and GIRK1 mRNAs, application of clozapine (100 microM) did not induce an inward current, suggesting that clozapine could not activate the mu-opioid receptor. 3. Application of clozapine caused a reduction of the basal inward current in the oocytes injected with the GIRK1 mRNA alone, but caused no current response in the uninjected oocytes. These results indicate that clozapine blocks the GIRK channel. 4. To test the antagonism of clozapine for the mu- and kappa-opioid receptors, we applied clozapine together with each selective opioid agonist to the oocytes co-injected with either the mu- or kappa-opioid receptor mRNA and the GIRK1 mRNA. Each of the peak currents induced by each selective opioid agonist together with clozapine was almost equal to the responses to a selective opioid agonist alone. These results indicate that clozapine has no significant antagonist effect on the mu- and kappa-opioid receptors. 5. We conclude that clozapine acts as a delta- and kappa-agonist and as a GIRK channel blocker. Our results suggest that the efficacy and side effects of clozapine under clinical conditions may be partly due to activation of the delta-opioid receptor and blockade of the GIRK channel.  相似文献   

8.
Recent cloning and expression studies have revealed that the opioid mu-, delta-, kappa- and orphan receptors are seven-transmembrane domain receptors whose actions are mediated through activation of guanine nucleotide binding protein (G-protein). The activation of G-proteins by the opioid receptor can be measured by assessing agonist stimulation of membrane binding of the non-hydrolyzable analog of guanosine triphosphate (GTP), guanosine-5'-O-(3-[35S] thio) triphosphate ([35S] GTP gamma S). Our recent data suggest that 1) the level of spinal mu-, delta-, kappa- and orphan-receptor agonist-stimulated [35S] GTP gamma S binding closely parallels that of receptor binding densities, 2) the neuroanatomical distribution of opioid agonist-stimulated [35S] GTP gamma S binding relates to receptor binding distribution, 3) newly isolated opioid peptides, endomorphin-1 and -2, can activate G-proteins by specific stimulation of mu-receptors and act as partial agonists with moderate catalytic efficacies, 4) mu-receptor densities could be rate-limiting steps in the G-protein activation by mu-agonists in the spinal cord region. In conclusion, opioid agonist-stimulated [35S] GTP gamma S binding can provide a functional method to localize receptors not only by their ability to bind ligands, but also according to their ability to activate an intracellular signal transducer.  相似文献   

9.
The effects of pretreatment with a protein kinase C activator, phorbol 12,13-dibutyrate, on antinociception induced by i.c.v.-administered mu-opioid receptor agonist (D-Ala2, NMePhe4, Gly(ol)5) enkephalin (DAMGO) or morphine and epsilon-opioid receptor agonist beta-endorphin were studied in male ICR mice. The tail-flick responses were used for antinociceptive tests. I.c.v. pretreatment with phorbol 12,13-dibutyrate (50 pmol) for 30 or 60 but not 10 min attenuated antinociception induced by i.c.v.-administered DAMGO. I.c.v. pretreatment with phorbol 12,13-dibutyrate (10 and 50 pmol) for 60 min caused a dose-dependent attenuation of DAMGO (19.5 pmol)- or morphine (6.0 nmol)-induced antinociception. The dose-response curve for DAMGO-induced antinociception was shifted to the right by 7.3-fold by i.c.v. pretreatment with phorbol 12,13-dibutyrate (50 pmol) for 60 min. However, the i.c.v.-administered beta-endorphin-induced antinociception was not affected by the same pretreatment with phorbol 12,13-dibutyrate. The attenuation of i.c.v.-administered DAMGO- and morphine-induced antinociception by phorbol 12,13-dibutyrate was reversed by concomitant i.c.v. pretreatment with a selective protein kinase C inhibitor calphostin C. These results suggest that activation of protein kinase C by phorbol 12,13-dibutyrate leads to the desensitization of mu-, but not epsilon-opioid receptor-mediated antinociception. These findings also provide additional evidence for differential intracellular modulation on antinociceptive action of mu- and epsilon-opioid receptor agonists.  相似文献   

10.
Although it is well-established that G protein-coupled receptor signaling systems can network with those of tyrosine kinase receptors by several mechanisms, the point(s) of convergence of the two pathways remains largely undelineated, particularly for opioids. Here we demonstrate that opioid agonists modulate the activity of the extracellular signal-regulated protein kinase (ERK) in African green monkey kidney COS-7 cells transiently cotransfected with mu-, delta-, or kappa-opioid receptors and ERK1- or ERK2-containing plasmids. Recombinant proteins in transfected cells were characterized by binding assay or immunoblotting. On treatment with corresponding mu- ([D-Ala2,Me-Phe4,Gly-ol5]enkephalin)-, delta- ([D-Pen2,D-Pen5]enkephalin)-, or kappa- (U69593)-selective opioid agonists, a dose-dependent, rapid stimulation of ERK1 and ERK2 activity was observed. This activation was inhibited by specific antagonists, suggesting the involvement of opioid receptors. Pretreatment of cells with pertussis toxin abolished ERK1 and ERK2 activation by agonists. Cotransfection of cells with dominant negative mutant N17-Ras or with a betagamma scavenger, CD8- beta-adrenergic receptor kinase-C, suppressed opioid stimulation of ERK1 and ERK2. When epidermal growth factor was used to activate ERK1, chronic (>2-h) opioid agonist treatment resulted in attenuation of the stimulation by the growth factor. This inhibition was blocked by the corresponding antagonists and CD8- beta-adrenergic receptor kinase-C cotransfection. These results suggest a mechanism involving Ras and betagamma subunits of Gi/o proteins in opioid agonist activation of ERK1 and ERK2, as well as opioid modulation of epidermal growth factor-induced ERK activity.  相似文献   

11.
The role of endogenous opioid peptides in the regulation of bronchomotor tone, as well as in the pathophysiology of asthma is uncertain. We have studied the binding of highly selective [3H]labeled ligands of mu-([D-Ala2, MePhe4, Gly-ol5]enkephalin; DAMGO), delta ([D-Pen2, D-Pen5]enkephalin; DPDPE), and kappa-(U-69,593) opioid receptors to membranes of trachea, main bronchus, lung parenchyma and pulmonary artery obtained from normal (unsensitized) and actively IgE-sensitized rats acutely challenged with the specific antigen. [3H]DAMGO, [3H]DPDPE and [3H]U-69,593 bound to membranes of normal and sensitized tissues at a saturable, single high-affinity site. The rank order of receptor densities in normal tissues was delta- > or = kappa- > or = mu-, with lung parenchyma exhibiting the greatest binding capacity for delta- and mu- receptors compared to the other regions examined. The Kd values showed small differences between ligands and regions tested. The mu- and delta-opioid receptor densities were decreased in sensitized main bronchus and lung parenchyma, respectively, compared to normal tissues. By contrast, kappa-opioid receptor density was augmented in sensitized lung parenchyma but an increase in Kd values was also observed. These differential changes in the density and affinity of opioid receptor types may be related to alterations in endogenous opioid peptides during the process of sensitization.  相似文献   

12.
The effects of acute and chronic administration of cocaine on the antinociception and tolerance to the antinociceptive actions of mu-(morphine), kappa-(U-50,488H), and delta-([D-Pen2,D-Pen5]enkephalin; DPDPE), opioid receptor agonists were determined in male Swiss-Webster mice. Intraperitoneal injection of 40 mg/kg of cocaine by itself produced weak antinociceptive response as measured by the tail-fick test but the lower doses were ineffective. Administration of morphine (10 mg/kg, SC), U-50,488H (25 mg/kg, IP) or DPDPE (10 microg/mouse, ICV) produced antinociception in mice. Cocaine (20 mg/kg) potentiated the antinociceptive action of morphine and DPDPE but had no effect on U-50,488H-induced antinociception. Administration of morphine (20 mg/kg, SC), U-50,488H (25 mg/kg, IP) or DPDPE (20 microg/mouse, ICV) twice a day for 4 days resulted in the development of tolerance to their antinociceptive actions. Tolerance to the antinociceptive actions of morphine and U-50,488H was inhibited by concurrent treatment with 20 or 40 mg/kg doses of cocaine; however, tolerance to the antinociceptive action of DPDPE was not modified by cocaine. It is concluded that cocaine selectively potentiates the antinociceptive action of mu- and delta- but not of the kappa-opioid receptor agonist. On the other hand, cocaine inhibits the development of tolerance to the antinociceptive actions of mu- and kappa- but not of delta-opioid receptor agonists in mice.  相似文献   

13.
14.
We have previously demonstrated that the antinociception induced by morphine and beta-endorphin given intracerebroventricularly (i.c.v.) is mediated by the stimulation of respective mu- and epsilon-opioid receptors. The effects of i.c.v. pretreatment with pertussis toxin on the antinociception induced by morphine and beta-endorphin given i.c.v. were studied in male ICR mice. Antinociception was assessed by the tail-flick and hot-plate tests. Pretreatment with pertussis toxin (0.5 microgram) given i.c.v. 96 h earlier blocks the antinociception induced by i.c.v. administered morphine in both tail-flick and hot-plate tests. The same pretreatment did not affect the antinociception induced by i.c.v. administered beta-endorphin. Our results indicate that morphine-, but not beta-endorphin-induced antinociception is mediated by pertussis toxin sensitive G-proteins.  相似文献   

15.
The purpose of this investigation was to evaluate changes in the sensitivity of spinal opioid receptors to selective antagonists in rats rendered dependent on intrathecal (i.t.) butorphanol and morphine. Using quantitative autoradiography, competitive binding assays with selective opioid antagonists were performed in the spinal cord sections of i.t. butorphanol- and morphine-dependent rats in which withdrawal was precipitated by i.t. naloxone. In butorphanol-dependent rats, the spinal kappa-opioid receptor developed a greater degree of antagonist supersensitivity than the spinal delta- and mu-opioid receptors did. In contrast, the spinal mu-opioid receptor became more sensitive than the delta-opioid receptor in morphine-dependent rats. These results indicate that differential supersensitivity of spinal opioid receptors was induced after chronic i.t. infusions of butorphanol and morphine.  相似文献   

16.
The present study investigated the possible role of nitric oxide (NO) in the development of the withdrawal contractures of guinea pig isolated ileum after acute activation of mu- and kappa-opioid receptors. After a 4-min in vitro exposure to morphine (mu-opioid receptor preferring, but not selective, agonist), [D-Ala2-N-methyl-Phe4-Gly5-ol-]enkephalin (DAMGO; highly selective mu-opioid receptor agonist), or trans(+/-)-3,4-dichloro-N-methyl-N-2(1-pyrrolidynyl)cyclohexyl-ben zeneacetamide (U50-488H; highly selective kappa-opioid receptor agonist), the guinea-pig isolated ileum exhibited a strong contracture after the addition of naloxone. L-N(G)-nitro arginine methyl ester (3-300 microM) injected 10 min before the opioid receptor agonists was able dose dependently to reduce the naloxone-induced contraction after exposure to mu- and kappa-opioid receptor agonists whereas D-N(G)-nitro arginine methyl ester at the same concentrations did not affect it. The inhibitory effect of L-N(G)-nitro arginine methyl ester on morphine, DAMGO and U50-488H withdrawal was dose dependently reversed by L-arginine (3-300 microM) but not by D-arginine. Finally, glyceryl trinitrate on its own (3-300 microM) significantly increased the naloxone-induced contraction after exposure to mu- and kappa-opioid receptor agonist and it was also able to reverse the inhibition of opioid withdrawal caused by L-N(G)-nitro arginine methyl ester. These results provide evidence that NO has a role in the development of opioid withdrawal and that mu- or kappa-opioid receptors are involved.  相似文献   

17.
This study examined the contribution of spinal delta1 and delta2 opioid receptors to the antinociception produced by microinjection of L-glutamate in either the nucleus raphe magnus (NRM) or the nucleus reticularis gigantocellularis pars alpha (NGCp alpha) of the rat. Intrathecal (i.t.) pretreatment with 1 microg of 7-benzylidinenaltrexone (BNTX), a delta1 opioid receptor antagonist, did not antagonize the increase in tail flick latency (TFL) produced by microinjection of L-glutamate in either the NRM or the NGCp alpha. In contrast, i.t. pretreatment with 3 microg of naltriben (NTB), a delta2 opioid receptor antagonist, completely antagonized the increase in TFL evoked by microinjection of L-glutamate in the NRM, but did not antagonize the increase in TFL evoked from the NGCp alpha. These results suggest that the antinociception produced by activation of these bulbospinal pathways is predominantly mediated by spinal delta2 opioid receptors and that there is little, if any, contribution by spinal delta1 opioid receptors.  相似文献   

18.
The effects of various opioid receptor agonists and antagonists were studied in rabbit caudate nucleus slices preincubated with either [3H]dopamine or [3H]choline, superfused with medium (containing in most experiments the D2 receptor antagonist domperidone) and subjected to electrical field stimulation. The stimulation-evoked [3H]overflow from slices prelabeled with [3H]dopamine (evoked [3H]dopamine release) was significantly reduced by preferential kappa-opioid receptor agonists, like U-50,488 H, but not by mu- or delta-opioid receptor selective drugs. Opioid receptor antagonists shifted the concentration/response curve of U-50,488 H to the right (apparent pA2-value of the kappa-selective antagonist nor-binaltorphimine: 10.1) and enhanced the evoked dopamine release in the presence of a mixture of peptidase inhibitors. On the other hand, the [3H]overflow from rabbit caudate nucleus slices prelabeled with [3H]choline (evoked acetylcholine release) remained almost unaffected by any opioid receptor agonist, as long as the presynaptic D2 heteroreceptor was blocked with domperidone: in the absence of domperidone, U-50,488 H exhibited facilitatory effects. For comparison, the effects of the preferential delta-opioid receptor agonist DPDPE was also studied in slices of the rat striatum, where it clearly inhibited the evoked acetylcholine release. From our data we conclude that in the rabbit caudate nucleus the evoked dopamine release is inhibited by both exogenous and endogenous opioids via presynaptic kappa-opioid receptors, whereas the evoked release of acetylcholine is not, or only indirectly (via released dopamine) affected by opioids.  相似文献   

19.
The analgesic effect of clinically used exogenous opioids, such as morphine, is mediated primarily through mu-opioid receptors, but the function of the kappa-receptor in opioid analgesia is unclear. Although kappa-receptor agonists can produce analgesia, behavioural studies indicate that kappa agonists applied intravenously or locally into the spinal cord antagonize morphine analgesia. As morphine, a primary mu agonist, also binds to kappa-receptors and the analgesic effectiveness of morphine decreases with repeated use (tolerance), it is important to understand the mechanism for the functional interaction between kappa- and mu-opioid receptors in the central nervous system. Here we present in vitro electrophysiological and in vivo behavioural evidence that activation of the kappa-receptor specifically antagonizes mu-receptor-mediated analgesia. We show that in slice preparations of a rat brainstem nucleus, which is critical for the action of opioids in controlling pain, functional kappa- and mu-receptors are each localized on physiologically different types of neuron. Activation of the kappa-receptor hyperpolarizes neurons that are activated indirectly by the mu-receptor. In rats, kappa-receptor activation in this brainstem nucleus significantly attenuates local mu-receptor-mediated analgesia. Our findings suggest a new cellular mechanism for the potentially ubiquitous opposing interaction between mu- and kappa-opioid receptors and may help in the design of treatments for pain.  相似文献   

20.
The effect of nicotine administered supraspinally on antinociception induced by supraspinally administered opioids was examined in ICR mice. The intracerebroventricular (i.c.v.) injection of nicotine alone at doses from 1 to 12 micrograms produced only a minimal inhibition of the tail-flick response. Morphine (0.2 micrograms), beta-endorphin (0.1 microgram), D-Pen2.5-enkephalin (DPDPE; 0.5 microgram), trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl) cyclohexyl] benzeocetamide (U50, 488H; 6 micrograms) caused only slight inhibition of the tail-flick response. Nicotine dose dependently enhanced inhibition of the tail-flick response induced by i.c.v. administered morphine (0.2 microgram) or beta-endorphin (0.1 microgram). The degree of enhancing effect of nicotine toward beta-endorphin-induced inhibition of the tail-flick response was greater than toward morphine-induced inhibition of the tail-flick response. However, i.c.v. administered nicotine at the same doses was not effective in enhancing the inhibition of the tail-flick response induced by DPDPE (0.5 microgram) or U50, 488H (6 micrograms) administered i.c.v. Our results suggest that stimulation of supraspinal nicotinic receptors may enhance antinociception induced by morphine (a mu-opioid receptor agonist) and beta-endorphin (an epsilon-opioid receptor agonist) administered supraspinally. However, the activation of nicotinic receptors at supraspinal sites may not be involved in enhancing the antinociception induced by DPDPE (a delta-opioid receptor agonist) or U50, 488H (a kappa-opioid receptor agonist) administered supraspinally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号