首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
2,6-Bis(5,6-diisohexyl-1,2,4-triazin-3-yl)pyridine (isoHexyl-BTP) is a nitrogen-donor chelating ligand which shows high extraction selectivity for minor actinides (MA) over lanthanides (Ln). We synthesized a macroporous sillica/polymer-based isoHexyl-BTP adsorbent (isoHexyl-BTP/SiO2-P) for the separation of MA(III) from Ln(III) in high-level liquid waste. The work focused on the isoHexyl-BTP/SiO2-P adsorption mechanism towards Ln(III) in nitric acid solution and the coordination chemistry between Ln(III) and isoHexyl-BTP/SiO2-P through batch adsorption experiments, extended X-ray absorption fine spectroscopy, acid-base titration and ion chromatography. It was found that both H+ and NO3? directly participated in the adsorption reaction. For the middle and heavy Ln(III), Ln(isoHexyl-BTP/SiO2-P)3(NO3)3·3HNO3 was supposed as the main product of the adsorption. The Ln(III)-N (Ln(isoHexyl-BTP/SiO2-P)33+) bond length of the first coordination layer decreased as the atomic number of Ln(III) increased, which explains the increased adsorption affinity of isoHexyl-BTP/SiO2-P towards middle and heavy Ln(III) in relatively high concentration nitric acid as the Ln(III) atomic number increased.  相似文献   

2.
Aiming at the selective recovery of fission palladium(II) from high-level liquid waste (HLLW), the silica/polymer (SiO2-P)-based isoHex-BTP adsorbent (isoHex-BTP/SiO2-P) was synthesized by impregnating complexing agent isoHex-BTP into the multiporous SiO2-P inert support. The feasibility of separation of Pd(II) from HLLW by isoHex-BTP/SiO2-P was evaluated by batch experiment method. The results showed that isoHex-BTP/SiO2-P exhibited much higher adsorption selectivity for Pd(II) than the other fission products, even Am(III) and Pu(IV) presented in HLLW. The ideal nitric acid concentration for the adsorption of Pd(II) by the adsorbent was shown to be ≥2 mol dm–3. The adsorption of Pd(II) fits well to the pseudo-second-order kinetic model and Langmuir isotherm model. Quantitative Pd(II) desorption was achieved by using 0.5 mol dm?3 SC(NH2)2 - 0.1 mol dm?3 HNO3 solution.  相似文献   

3.
From a viewpoint of direct separation of trivalent minor actinides (MA: Am, Cm etc.) from fission products (FP) including rare earths (RE) in high level radioactive liquid waste, the authors have developed a simplified separation process using a single column packed with novel extraction adsorbents. Attention was paid to a new type of nitrogen-donor ligand, R-BTP (2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine, R: alkyl group) as an extractant because it has higher extraction selectivity for Am(III) than RE(III). Since the R-BTP ligands show different properties such as adsorbability and stability when they have different alkyl groups, several R-BTP extraction adsorbents were prepared by impregnating the R-BTP ligands with different alkyl groups (isohexyl-, isoheptyl- and cyheptyl-BTP) into a porous silica/polymer composite support (SiO2-P particles). This work investigated: (1) fundamental properties of the synthesized R-BTP/SiO2-P adsorbents, (2) adsorption and desorption properties of Am and FP in nitric acid solution and water using the adsorbents in a batch experiment, (3) radiolytic and chemical stabilities of the adsorbents, and (4) the possibility for developing a simplified separation process of MA using the most promising adsorbent (isohexyl-BTP/SiO2-P) under temperature control between 25 and 50°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号