首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
用电化学方法和腐蚀失重法研究了 2024Al和SiCp/2024Al复合材料在 3.5%NaCl水溶液中的耐蚀性,用电化学阻 抗技术对它们的硫酸阳极氧化膜保护性进行了跟踪评价.结果表明SiCp/2024Al在 3.5%NaCl水溶液中比 2024Al有较大的 腐蚀敏感性.2024Al表面的阳极氧化膜,经热水封闭后,可提供相当好的保护作用.热水封闭的Sip/2024Al阳极氧化膜, 具有良好的耐 NaCl溶液腐蚀能力,由于氧化膜中SiC颗粒的存在破坏了氧化膜的完整性和均匀性,故其耐蚀性不如 2024 Al 合金的阳极氧化膜.  相似文献   

2.
通过对SiCw/6061Al与SiCp/2024Al复合材料的蠕变及循环蠕变行为的对比研究发现,虽然SiCw/6061Al复合材料与SiCp/2024Al复合材料相比有较高的蠕变抗力,但其蠕变门槛应力却较低,两种材料在298℃都显示循环蠕变减速行为,但后者更明显,SiCw/6061Al复合材料的稳态循环蠕变速率随卸载量增加首先降低然后升高,而SiCp/2024Al复合材料的稳态循环蠕变速率却随卸载  相似文献   

3.
SiCp/2024Al复合材料及2024Al合金的微屈服行为   总被引:7,自引:0,他引:7  
对SiCp/2024Al复合材料及其基体2024Al合金的微了行为和热处理的影响进行了详细的比较研究。结果表明,由于SiC颗粒的作用,复合材料在微屈服前即已产生明显的应变弛豫,并且其微屈服行为也与铝合金不同。在时效处理中,两种材料的微屈服强度均受时效强化相析出规律的控制。表明出“峰时效”现象;而冷热循环处理能改善2024Al的微屈服性能,但却对SiCp/2024Al的微屈服强度不利。  相似文献   

4.
A16061/SiCp复合材料表面Ce转化膜腐蚀行为的研究   总被引:3,自引:0,他引:3  
于兴文  尹钟大 《金属学报》2000,36(3):313-318
利用金相和X射线能谱分析了A16061/SiCp复合材料表面Ce转化膜的腐蚀行为,实验表明:Ce转化膜在NaCl溶液中的腐蚀以点钟开始,点蚀处基体为SiC颗粒的富集区,根据Mansfeld点腐蚀模型等效电路。通过电化学阻抗谱(EIS)研究了Ce转化膜NaCl溶液中的腐蚀程度:转化膜在NaCl溶液中的腐蚀程度,转化膜在NaCl溶液中浸泡时间较短的情况下,等铲 的Warberg阻抗可忽略,可以对等效电  相似文献   

5.
冯祖德  林昌健  谭建光  林君山 《金属学报》1997,33(10):1040-1046
本文研究了碳化硅颗粒的体积分数和介质中的Cl^-含量对于SiCp/2024Al铝基复合材料腐蚀性能的影响,用扫描微参比电极测量系统首次显示和跟踪了复合材料点蚀发生及发展的微区动态行为,动电位循环极化法研究表明,SiCp/2024Al复合材料比相应的纯铝基金属有较大的腐蚀敏感性。  相似文献   

6.
研究了Al6061/SiCp复合材料阳极氧化稀土盐封孔工艺,利用电化学方法评价了化膜的耐磨蚀性能,稀土盐封孔氧化膜的耐蚀性与铬酸封闭是极氧化膜具有可比性。利用X射线衍射分析(XRD)了氧化膜的结构,结果表明氧化膜为非晶态。X射线光电子能谱(XPS)分析证明氧化膜表面的主要成分是铈的氢氧化物。  相似文献   

7.
利用金相和 X射线能谱分析了 A16061/SiCp复合材料表面 Ce转化膜的腐蚀行为实验表明: Ce转化膜在 NaCl溶液中的腐蚀以点蚀开始,点蚀处基体为 SiC颗粒的富集区根据 Mansfeld点腐蚀模型等效电路,通过电化学阻抗谱(EIS)研究了 Ce转化膜在 NaCl溶液中的腐蚀程度;转化膜在 NaCI溶液中浸泡时间较短的情况下,等效电路中的 Warberg阻抗可忽略,可以对等效电路简化处理研究转化膜点蚀程度  相似文献   

8.
对机械合金化制备的Al_4C_3、Al_2O_3弥散质点和SiC颗粒复合强化Al基复合材料进行了拉伸试验和断口分析,并测定了弹性模量和热膨胀系数.研究表明,在SiC_p/Al复合材料中引入弥散的Al_4C_3和Al_2O_3质点可以明显提高复合材料的室温和高温强度,随加入C含量的增加或Al粉氧化时间的加长,复合材料的强度提高.在Al_4C_3/Al复合材料的基础上加入SiC颗粒可以提高复合材料的弹性模量并进一步降低其热膨胀系数.复合材料断口为大韧窝加细小韧窝的混合断口,随复合材料基体强度的增加,拉伸断口上断裂的SiC颗粒数量增多.  相似文献   

9.
对机械合金化制备的Al_4C_3、Al_2O_3弥散质点和SiC颗粒复合强化Al基复合材料进行了拉伸试验和断口分析,并测定了弹性模量和热膨胀系数.研究表明,在SiC_p/Al复合材料中引入弥散的Al_4C_3和Al_2O_3质点可以明显提高复合材料的室温和高温强度,随加入C含量的增加或Al粉氧化时间的加长,复合材料的强度提高.在Al_4C_3/Al复合材料的基础上加入SiC颗粒可以提高复合材料的弹性模量并进一步降低其热膨胀系数.复合材料断口为大韧窝加细小韧窝的混合断口,随复合材料基体强度的增加,拉伸断口上断裂的SiC颗粒数量增多.  相似文献   

10.
TiCp/2024Al复合材料的流动性   总被引:3,自引:1,他引:2  
用流动性真空测试仪,测试了TiCp/2024Al复合材料的流动性,从流体力学和传热学角度分析了影响TiCp/2024Al复合材料流动性的因素,建立了TiCp/2024Al复合材料液体在圆管内流动的数学模型,进行了理论计算,将其与实际测试结构相比较。结果显示温度、颗粒含量和充型压力是影响TiCp/2024Al复合材料流动的主要因素。  相似文献   

11.
用动电位阳极极化和点滴法评估了17%SiCp/2024Al复合材料(MMC)硫酸阳极氧化膜的耐蚀性,用光学显徽镜、SEM和TEM对氧化膜的形貌和结构进行了观察,用EDXS分析了膜的组成,极化实验结果表明,复合材料的阳极氯化膜具有良好的耐NaCl溶液腐蚀的能力,其腐蚀速度较未处理的基体降低了2个数量级以上。SEM形貌表明,SiC颗粒对膜的生长有阻碍作用,低电流密度下形成的阳极氧化膜膜层较薄,结构致密,孔隙细小,腐蚀实验结果表明该膜层具有更高的耐蚀性,TEM显示,MMC阳极氧化膜的孔隙分布严重不均,在SiC颗粒周围的基体中,孔隙密度较大,孔隙间距较小,孔径也较大,最大可达50nm,这表明阳极氧化膜具有低抗蚀性的结构特征,EDXS分析表明SiC颗粒在阳极氧化过程中会被氧化。  相似文献   

12.
采用动电位阳极极化法对17%SiCp/2024Al基复合材料及其基体合金在3.5%NaCl水溶液中的耐蚀性进行了研究.结果表明:SiC颗粒的加入并不影响SiCp/2024Al基复合材料的点蚀敏感性,但与基体相比,其耐蚀性有所下降.对极化后和长期浸泡试样的腐蚀形貌观察发现:与基体相比,SiCp/2024Al基复合材料表面上的蚀孔数量相对较多,蚀孔尺寸稍小,大小分布不均匀;最大蚀孔较深,并有严重的裂缝腐蚀;裂缝腐蚀的存在会使SiCp/2024Al基复合材料的点蚀抗力明显降低.能谱分析表明:SiCp/2024Al基复合材料的腐蚀机制为富Cu阴极相与贫Cu阳极相间的电偶腐蚀,另外,SiC与Al间也存在电偶腐蚀倾向.  相似文献   

13.
Electrochemical impedance spectroscopy in the 100 kHz-5 mHz frequency range was applied to the study of corrosion behaviour of solar reflector coatings on AA 2024 exposed to 3.5% NaCl solution. Solar reflector coatings were obtained by sulphuric acid anodization of the alloy in presence of oxo-anions of molybdenum or vanadium. Corrosion behaviour of the oxide films was evaluated by determining the film resistance and capacitance values with exposure time. Comparison of the results reveals that, vanadium addition confers better barrier properties and corrosion resistance than molybdenum additions. Analysis using damage function based on the impedance at 100 mHz shows that solar reflector coatings have improved corrosion behaviour than normal sulfuric acid anodized oxide films on AA 2024.  相似文献   

14.
Electrochemical impedance spectroscopy (EIS) and the scanning electron microscope (SEM) have been used in an investigation of the effectiveness of various sealing methods that can be used to improve the corrosion resistance of an anodized aluminum‐silicon carbide (Al/SiC) composite. Anodic oxide films were grown on Al7075‐T6 and the Al/SiC composite by sulfuric acid anodizing and sealing in a cold saturated solution of nickel acetate. Other samples were sealed using the traditional method of boiling water or hot nickel acetate for comparison. The results revealed a uniform anodized layer on Al7075‐T6 that resisted pitting corrosion for more than 2 weeks exposure to NaCl, whereas a cracked oxide film with variations in thickness was observed on the composite material. Pit initiation occurred in less than 5 days on the anodized Al/SiC that was sealed in the hot solutions. This study suggests that the traditional hot sealing methods did not provide sufficient corrosion protection for aluminum metal–matrix composites (MMCs) because the reinforcing SiC particles deteriorated the surface film structure. However, this defective film can be repaired by nickel hydrate precipitation during cold sealing or by applying a thick polyurethane coating.  相似文献   

15.
The corrosion protection of Mg–Al alloys by flame thermal spraying of Al/SiC particles (SiCp) composite coatings was evaluated by electrochemical impedance spectroscopy in 3.5 wt.% NaCl solution. The volume fraction of SiCp varied between 5 and 30%. The as-sprayed Al/SiCp composite coatings revealed a high number of microchannels, largely in the vicinity of the SiCp, that facilitated the penetration of the electrolyte and the subsequent galvanic corrosion of the magnesium substrates. The application of a cold-pressing post-treatment reduced the degree of porosity of the coatings and improved the bonding at the coating/substrate and Al/SiC interfaces. This resulted in improved corrosion resistance of the coated specimens. The effectiveness of the coatings slightly decreased with the addition of 5–30 vol.% SiCp compared with the unreinforced thermal spray aluminium coatings.  相似文献   

16.
用电化学方法、实验室全浸实验和x射线应力分析技术研究了退火温度对碳化硅颗粒增强2024铝(SiCp/2024Al)基复合材料腐蚀行为的影响,并用扫描电子显微镜(SEM)观察了腐蚀前后的微观形貌.结果表明;高温退火条件下材料的腐蚀电位Ecorr和孔蚀电位Epit均有较大程度的负移,但退火温度的不同对SiCp/2024Al基复合材料抗局部腐蚀能力影响不大;退火温度升高,由于富铜相析出增加及热失配造成的微缝隙增多而使材料的腐蚀坑变多、变浅、均匀化程度加深.  相似文献   

17.
2024铝合金混合酸阳极氧化   总被引:2,自引:2,他引:0  
目的在混合酸溶液中,对2024铝合金进行不同条件下的阳极氧化,并制备氧化膜,研究比较氧化膜厚度、表面形貌和耐腐蚀性等的不同。方法 2024铝合金在硫酸-磺基水杨酸-乳酸体系中进行阳极氧化,改变氧化时间(20~60 min)与氧化电流密度(2.5~4.5 A/dm^2),观察氧化膜的表面形貌、显微硬度、厚度、晶体结构以及耐蚀性的变化。结果每次实验的氧化时间为40 min不变,改变电流密度得到一系列阳极氧化膜,当电流密度为3.0 A/dm^2,自腐蚀电位最正,接近0.0 V时膜层的耐蚀性最好。若继续增加电流密度,则自腐蚀电位会负向移动。当电流密度为4.5 A/dm^2时,自腐蚀电位最负,为-1.1 V。保持电流密度为2.5 A/cm^2不变,改变氧化时间,得到一系列阳极氧化膜,当氧化时间达到50 min时,氧化膜的耐腐蚀性最好,自腐蚀电位为-0.6 V。XRD分析表明,氧化膜由γ-Al2O3和α-Al2O3组成。氧化膜的显微硬度和厚度会随着电流密度及时间的增加而增大,氧化膜硬度、厚度最大分别为372.3HV、6.8μm。结论当阳极氧化电流密度为3.0 A/d、氧化时间为50 min时,膜层的耐蚀性最好。  相似文献   

18.
用电化学方法和浸泡试验研究了SiC颗粒粒度和体积分数对SiCp/ 2 0 2 4Al铝基复合材料在 3.5 %NaCl水溶液中耐蚀性的影响 ,作为比较对 2 0 2 4Al的耐蚀性也进行了研究。结果表明 ,与基体相比 ,SiCp/ 2 0 2 4Al复合材料并不增加点蚀敏感性 ,其抗蚀性与SiC体积分数和粒度有关 ,SiC颗粒体积分数低或粒度高的复合材料 ,其抗蚀性往往大。  相似文献   

19.
ABSTRACT

This work is focused on the evaluation of the corrosion behaviour of an AA2024-T351/SiC surface composite produced by friction stir processing (FSP). The surfaces composite show a quite homogenous distribution of the SiC particles in the stir zone, together with a significant grain size reduction as Electron Backscatter Diffraction analysis confirms. The corrosion behaviour was evaluated in 3.5 wt-% NaCl solution using electrochemical techniques. The complete study shows that all processed samples have similar corrosion resistance at the stirred region and differ from the base material behaviour. The results indicate that the galvanic coupling metal matrix–SiC particles are less active than the galvanic coupling metal matrix–Cu-rich second phases. Although the initial corrosion resistance of the base aluminium alloy is the worst of all systems studied, for long immersion times the development of corrosion through grain boundaries was found to progressdeeper in the 2024Al/SiC surface produced by FSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号