首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正交切削高强度钢绝热剪切带组织和硬度研究   总被引:1,自引:0,他引:1  
为了研究切削速度和工件硬度对高强度钢锯齿形切屑内绝热剪切带显微组织和硬度的影响,利用光学显微分析、SEM和TEM以及硬度测量等方法观察和测量了不同切削速度下正交切削两种回火硬度的30CrNi3MoV钢形成的锯齿形切屑中绝热剪切带的微观组织和显微硬度的变化过程.结果表明:低速下形成以组织剧烈拉长为特征的形变带,高速下形成以组织严重细化为特征的转变带;工件硬度的提高有利于形成转变带;增加切削速度和工件硬度对转变带硬度影响很小,但会显著提高形变带硬度.  相似文献   

2.
工业纯钛TA2剪切带中微观组织的演变   总被引:1,自引:1,他引:0  
剪切变形局域化是结构材料经受冲击时的一种重要失效机制,为研究密排六方晶体结构金属材料的绝热剪切带形成条件与扩展规律,采用HOPKINSON压杆装置对精加工后的工业纯钛帽形样品进行高速冲击,利用扫描电镜和高分辨透射电镜研究了剪切带形貌和剪切带微观组织的演化过程.结果表明,工业纯钛TA2经高速冲击后,在帽形样品的韧带部位形成了明显的剪切带,剪切带组织由细小的再结晶晶粒组成,剪切带内没有相变发生,剪切带内的动态再结晶过程通过渐进式亚晶位相差再结晶机制完成.  相似文献   

3.
4.
A novel energy-based variational approach is proposed for modeling adiabatic shear band (ASB) structure evolution, including elasticity, work hardening, and heat conduction. Conservation laws are formulated as a mathematical optimization problem with respect to a limited set of scalars. Consequently, by means of canonical expressions of displacement and temperature, the bandwidth and the central temperature can be accurately computed as internal variables. Based on this thermo-mechanical coupled variational framework, we can verify the generality of the proposed analytical approach with respect to constitutive models, as illustrated through various thermal softening laws such as power laws or the popular Johnson–Cook model. In addition, accounting for work hardening and elasticity, we propose an effective (or macroscopic) thermo-elasto-viscoplastic model of the shear localization zone in transient regime. A new loading/unloading condition, stemming as a Kuhn–Tucker relation, is introduced for this variational model. The stress evolution and the capacity of the approach to handle cyclic loading are analyzed, presenting a very good correspondence with ASB simulations by finite element method.  相似文献   

5.
轴承钢GCr15高速冲击绝热剪切带的研究   总被引:1,自引:0,他引:1  
为了加深对风机轴承失效的进一步理解,从而提高其服役寿命,本文提出并研究了轴承钢GCr15在动载荷下的失效模式,采用分离式霍普金森压杆(SHPB)对轴承钢GCr15进行动态冲击试验,借助光学显微镜、SEM和FIB/TEM研究动态载荷下绝热剪切带的形成机理和组织变化.研究表明:冲击载荷下GCr15内部产生致密的绝热剪切带,且裂纹伴随着剪切带产生.剪切带中的晶粒被严重细化,由亚结构和纳米等轴晶组成.带中心部位大量位错缺陷的存在说明晶粒是在动态回复和不完全动态再结晶主导机制下逐步被细化的过程.细化的晶粒使得ASB内显微硬度值显著升高.  相似文献   

6.
Dynamic deformation and failure behavior of a tungsten heavy alloy (93W) under complex stress condition are studied using a split Hopkinson pressure bar (SHPB) apparatus. Cylindrical, step-cylindrical and truncated-conic specimens are used to generate different stress condition in an attempt to induce strain localization in the alloy. The microstructure of the specimens after tests is examined by optical microscopy and scanning electronic microscopy (SEM). It is found that in all the specimens, except the cylindrical ones, intense strain localization in the form of shear bands is initiated at stress concentration sites. In order to analyze the stress condition of different specimen geometry, finite element simulations are also presented. The Johnson-Cook model is employed to simulate the thermo-viscoplastic response of the material. It is found that dynamic deformation and failure modes are strongly dependent on the geometry of the specimens. The stress condition controlled by specimen geometry has significant influence on the tendency for shear band formation. The adiabatic shear band has general trends to initiate and propagate along the direction of maximum shear stress. It is suggested that further studies on the control of the stress condition to promote shear band formation be conducted in order to improve the penetration performance of the tungsten heavy alloy.  相似文献   

7.
It is presently a concern and challenge to numerically model shear band localization. Many numerical methods have been developed to take into account the strain and displacement discontinuities across a shear band. In this paper, a contact band element method is proposed to model the shear band with a finite thickness under large shear deformation. The shear band elements, alternatively called contact band elements, are continuously updated based on their current configurations to prevent the large distortions of conventional finite elements and maintain realistic shear band configurations. The contact band element method, with a technique for the special shear band element, consists of the schemes to keep the shear band elements in good shapes, handle the band overlapping, kinking and separation problems. A few examples have shown that the contact band element method is a very efficient way to model the shear bands under large shear deformation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The spatial distribution of shear bands was investigated in the rolled 7075 aluminum alloy through the thick-walled cylinder (TWC) technique with 0°, 90° and 45° angles between the aluminum alloy cylinder axial direction and the rolling direction. Self-organization of multiple adiabatic shear bands was observed in different orientation specimens and investigated by using Schmid factor theories. The experimental results indicated obvious differences in the morphology and self-organization of shear bands for the specimens. At the initial stage, the spacing of the shear bands in the 0° specimen is smaller than in the other specimens. The nucleation of the shear bands in the 90° specimen is early. Due to the shielding effect, fast-developed shear bands block the development of the neighboring smaller shear bands in the 90° specimen. The spacing of the shear bands in the 45° specimen is much larger than in the other specimens under the similar effective strain. At the late stage, a large number of shear bands nucleate in the 0° specimen, and the spacing of the shear bands is small. The shear bands in the 90° specimen are well-developed with obvious shielding effect and the largest spacing. The 45° specimen has the maximum average nucleation rate of the shear bands. Owing to the close Schmid factors of the slip systems of the 45° specimen, the spacing of the shear bands in the 45° specimen is still larger than in the 0° specimen.  相似文献   

9.
The adiabatic shear band (ASB) was obtained by split Hopkinson pressure bar (SHPB) technique in the hat-shaped specimen of a near beta-Ti alloy. The microstructure and the phase transformation within the ASB were investigated by means of TEM. The results show that the elongated subgrains with the width of 0.2-0.4 μm have been observed in the shear band boundary, while the microstructure inside the ASB consists of fine equiaxed subgrains that are three orders of magnitude smaller than the grains in the matrix. The β → ω(althermal) phase transformation has been observed in the ASB, and further analysis indicates that the shear band offers thermodynamic and kinetic conditions for the ω(althermal) phase formation and the high alloying of this alloy is another essential factor for this transformation to take place. The thermo-mechanical history during the shear localization is calculated. The rotational dynamic recrystallization (RDR) mechanism is used to explain the microstructure evolution mechanism in the shear band. Kinetic calculations indicate that the recrystallized fine subgrains are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation.  相似文献   

10.
This work addresses the effect of small geometrical imperfections on adiabatic shear band (ASB) formation. The separate effect of the length and radius of short notches is systematically investigated in AM50 and Ti6Al4V alloys, using shear compression specimens. It is observed that the length of the imperfection does not influence ASB formation in these experiments. By contrast, the notch-root radius appears to be the dominant parameter for the two materials, in perfect agreement with the analytical predictions of Dinzart et al. [The catastrophic development of shear localization in thermoviscoplastic materials. J Phys 1994; IV(C8): 435–40]. The distribution of deformation energy over the gauge length is modeled numerically. The calculated average dynamic deformation energy levels are quite similar to those that are measured for the two investigated alloys. It is concluded that the global measure of the dynamic deformation energy provides valuable information about ASB failure from geometrical imperfections.  相似文献   

11.
ABSTRACT

This study investigates the effects of strain, strain rates, and forming directions (RD-rolling direction, TD-transverse direction, and ND-normal direction) on adiabatic shear, via dynamic impact compression tests using the Split Hopkinson Pressure Bar (SHPB) apparatus. A modified Johnson-Cook (J-C) constitutive model is proposed, which used to analyse the influence of the constitutive parameters on the sensitivity of adiabatic shear, employing a finite element software. The different sensitivities of adiabatic shear under different directions are explained by combining microscopic analysis and results from mechanical responses. The results show that the sensitivity of adiabatic shear can be related to the time of stress collapse in the following trend: ND?>?TD?>?RD; the sensitivities of these constitutive parameters on adiabatic shear are calculated and compared.  相似文献   

12.
13.
采用分离式霍普金森压杆(Hopkinson Bar)装置系统,对TC11钛合金进行室温高应变速率(700-2100s^-1)动态剪切试验,通过光学显微镜、显微硬度分析仪、扫描电镜研究了TC11钛合金动态剪切行为、绝热剪切带微观组织与性能。结果表明:TC11钛合金随应变速率的提高绝热剪切敏感性增加;绝热剪切带由过渡区域的变形拉长组织和中间部位的细小晶粒组织组成,具有清晰的剪切变形流线,宽度约为10μm;绝热剪切带内的显微硬度值高于基体组织,是,由应变速率强化和应变强化与热软化相互作用的结果。  相似文献   

14.
穿甲靶板弹孔微观结构观察及侵彻过程分析   总被引:1,自引:0,他引:1  
为研究穿甲侵彻机理,使用海37弹道炮,发射93W次口径穿甲弹,侵彻45靶板,采用扫描电镜和透射电镜研究弹孔周围微观结构特点.研究结果表明,绝大部分弹孔表面被溶化快凝物覆盖,其厚度约为10μm,其内未发现腐蚀组织.熔化物中含有钨的成分,说明在侵彻过程中产生的高压下,钨颗粒可以熔化.高速碰撞动能在侵彻瞬间可能使弹靶部分作用区域的温度超过钨的熔点.靶板材料在局部区域熔化和再结晶,破坏形式为延性扩孔破坏,观察弹孔周围未发现绝热剪切带.  相似文献   

15.
We present results of testing soft and high-strength steels for impact compression and show that the dependences of the compression resistance of tested metals on the level of strains are qualitatively similar. It is also shown that, as the strain rate increases, the compression resistance of the metals first strongly increases and then attains the zone of saturation in which the difference between the levels of compression resistance of these metals decreases. We also consider some specific features of the processes of deformation and fracture in the analyzed metals on the microstructural level.  相似文献   

16.
The self-organization behaviors of multiple adiabatic shear bands (ASBs) in the 7075 T73 aluminum alloy were investigated by means of the thick-walled cylinder (TWC) technique. Shear bands first nucleate at the inner boundary of the aluminum alloy tube and propagate along the maximum shear stress direction in the spiral trajectory. On the cross section of the specimen, shear bands distribute either in the clockwise or the anticlockwise direction. The number of ASBs in the clockwise direction is roughly twice that in the anticlockwise direction. However, the 7075 annealed alloy does not generate any shear band under the same experimental conditions.Numerical simulation with coupled thermo-mechanical analysis was carried out to investigate the evolution mechanism of adiabatic shear bands. Both uniform and non-uniform finite element models were created. The simulation results of the non-uniform model are in better agreement with those of the experiment. In the non-uniform case, the spacing between ASBs is larger than that of the uniform model, and most of the ASBs prefer to propagate in the clockwise direction. For the first time, two types of particles (second phase), hard particles and soft particles, are separately introduced into the metal matrix in the non-uniform model to simulate their effects on the self-organization of ASBs. The soft particles reduce the time required for ASBs nucleation. Stress collapse first occurs at the region where the soft particles are located and most of the ASBs pass through these soft particles. However, ASBs propagate along the paths that are adjacent to the hard particles instead of passing through them. As experimental observations, there is no shear band nucleating in the annealed alloy in simulation. Under the same conditions, the energy barrier for the formation of ASBs in the annealed aluminum alloy is about 2.5 times larger than that in the T73 alloy, which means that the adiabatic shearing is less likely to nucleate in the annealed alloy. This is consistent with the experimental and numerical simulation results.  相似文献   

17.
基于面心立方固溶体结构和时效强化机理,设计出一种新型高密度合金NiW750。利用SEM,TEM对合金微观组织进行观察,采用分离式Hopkinson压杆实验研究合金在动态压缩条件下的特点,并将此合金与其领域常用材料超高强度钢G50及钨合金93WNiFe进行对比。结果表明:NiW750合金在3种材料中综合性能最好。在750℃/5h时效后,合金抗拉强度可达1746MPa,冲击韧度( a kU )可达113J/cm^2。在动态加载条件下,材料存在应变率硬化效应,其动态流变应力可达到2250MPa左右。试样在与中心轴线成45°方向形成绝热剪切带,在应变率约5500s -1 条件下,带宽80~150μm,过渡区较宽,避免材料剪切断裂过早出现。  相似文献   

18.
The correlation of adiabatic shearing behavior with fracture was investigated in Ti-6Al-4V alloys with bimodal and lamellar microstructures by split Hopkinson pressure bar (SHPB) apparatus and ballistic impact test. The experiment results show that the macrographic characteristic of post-critical fracture is closely related with the behavior of adiabatic shear band (ASB) in these titanium alloys under high strain rate conditions. In bimodal microstructure, adiabatic shear bands are self-organized and distributed in somewhat regularly spaced clusters. These adiabatic bands as well as the correlated cracks spread far off along the maximum shear stress plane, which causes the projectiles fracture along the dominant cluster of adiabatic shear bands, and the fracture surfaces make an acute angle with the flat end of the projectile. In case of lamellar microstructure, the adiabatic shear bands branch off and interconnect with one another into a net-like structure. Such adiabatic shearing cracks can't spread deep resulting from the branching off and interaction of adiabatic shear band, but only to split the specimen into small fragments, which leads to the erosion of the projectile and the resulting fracture surfaces almost parallel to the flat end of the projectile.  相似文献   

19.
A new two‐scale finite element formulation was developed for modeling J2 plastic deformation processes (2D) in which shear band localizations take place. The formulation is based on the use of embedded strong discontinuity modes, which are triggered using a stress‐based criterion. The new formulation does not require a specific mesh refinement to model the localization phenomena and provides mesh‐independent results. The shear bands constitutive behavior is derived from the continuum properties without the introduction of any ad hoc physical law. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The thermo-mechanical aspects of adiabatic shear band (ASB) formation are studied for two commercial alloys: Mg AM50 and Ti6Al4V. Tests are carried out on shear compression specimens (SCS). The evolution of the temperature in the deforming gauge section is monitored in real-time, using an array of high-speed infrared detectors synchronized with a Kolsky apparatus (split Hopkinson pressure bar). The evolution of the gage temperature is found to comprise three basic stages, in agreement with Marchand and Duffy’s simultaneous observations of mechanical data and gauge deformation patterns (1988). The onset and full formation stages of ASB are identified by combining the collected thermal and mechanical data. Full development of the ASB is identified as the point at which the measured and calculated temperature curves intersect and diverge thereon. At that stage, the homogeneous strain assumption used in calculating the maximum temperature rise is no longer valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号