首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A finite element analysis based methodology was developed to compute local relative slip on contact surface from the measured global relative slip away from contact surface. A set of springs was included in finite element model to simulate fretting fatigue test system. Compliance of springs was calibrated by comparing experimental and computed global relative slips. This methodology was then used to investigate local relative slip during fretting fatigue in cylinder‐on‐flat contact configuration under partial slip contact condition for unpeened and shot‐peened titanium alloy, Ti–6Al–4V. Relative slip on contact surface is significantly smaller (about one order) than the measured global relative slip by using a conventional extensometer near the contact surface. Effects of coefficient of friction, rigidity of fretting fatigue system and applied stress to specimen on the global and local relative slips were characterized. Coefficient of friction and contact load have considerable effect on local relative slip, and practically no effect on global relative slip. Gross slip condition can develop at some locations on contact surface in spite of overall partial slip condition. Increase in rigidity of fretting fatigue system increases local relative slip but decreases global relative slip. Finally, fatigue life diagrams based on relative slip on contact surface are established for both unpeened and shot‐peened titanium alloy. These show the same characteristics as of the conventional SN diagram where fatigue life decreases with increase of relative slip.  相似文献   

2.
This paper analyses the effect of surface treatment on fretting fatigue specimen by numerical simulations using Finite Element Analysis. The processed specimen refers to artificially adding a cylindrical pit to its contact surface. Then, the contact radius between the pad and the specimen is controlled by adjusting the radius of the pit. The stress distribution and slip amplitude of the contact surface under different contact geometries are compared. The critical plane approach is used to predict the crack initiation life and to evaluate the effect of processed specimen on its fretting fatigue performance. Both crack initiation life and angle can be predicted by the critical plane approach. Ruiz parameter is used to consider the effect of contact slip. It is shown that the crack initial position is dependent on the tensile stress. For same type of model, three kinds of critical plane parameters and Ruiz method provide very similar position of crack initiation. Moreover, the improved sample is much safer than the flat-specimen.  相似文献   

3.
张晓化  刘道新 《材料工程》2006,(9):31-35,41
研究了Ti811钛合金表面电火花强化层的界面成分分布、耐磨和微动疲劳性能.研究结果表明:以0Cr18Ni9合金为电极材料在Ti811钛合金表面进行电火花处理可以形成合金层,显著提高了钛合金表面硬度和耐磨性能.但由于合金层硬度高,韧性较低,在微动疲劳(FF)过程中易萌生裂纹并快速扩展进入基体,致使高温下钛合金FF抗力降低.对电火花强化层进行喷丸强化(SP)后处理能够使钛合金FF抗力恢复到裸件的水平.  相似文献   

4.
S. Mall  V. K. Jain  H. A. Fadag 《Strain》2011,47(Z1):e305-e318
Abstract: The effects of shot‐peening on fretting fatigue crack growth behaviour in titanium alloy, Ti‐6A1‐4V were investigated. Three shot‐peening intensities: 4A, 7A and 10A were considered. The analysis involved the fracture mechanics and finite element sub‐modelling technique to estimate crack propagation lives. These computations were supplemented with the experimentally measured total fretting fatigue lives of laboratory specimens to assess the crack initiation lives. Shot‐peening has significant effect on the initiation/propagation phases of fretting fatigue cracks; however this effect depends upon the shot‐peening intensity. The ratio of crack initiation and total life increased while the ratio of the crack propagation and total life decreased with an increase of shot‐peening intensity. Effects of residual compressive stress from shot‐peening on the crack growth behaviour were also investigated. The fretting fatigue crack propagation component of the total life with relaxation increased in comparison to its counterpart without relaxation in each shot‐peened intensity case while the initiation component decreased. Improvement in the fretting fatigue life from the shot‐peening and also with an increase in the shot‐peening intensity appears to be not always due to increase in the crack initiation resistance from shot‐peened induced residual compressive stress.  相似文献   

5.
This paper deals with modeling of the phenomenon of fretting fatigue inheterogeneous materials using the multi-scale computational homogenization techniqueand finite element analysis (FEA). The heterogeneous material for the specimens consistsof a single hole model (25% void/cell, 16% void/cell and 10% void/cell) and a four-holemodel (25% void/cell). Using a representative volume element (RVE), we try to producethe equivalent homogenized properties and work on a homogeneous specimen for thestudy of fretting fatigue. Next, the fretting fatigue contact problem is performed for 3 newcases of models that consist of a homogeneous and a heterogeneous part (single hole cell)in the contact area. The aim is to analyze the normal and shear stresses of these modelsand compare them with the results of the corresponding heterogeneous models based onthe Direct Numerical Simulation (DNS) method. Finally, by comparing thecomputational time and % deviations, we draw conclusions about the reliability andeffectiveness of the proposed method.  相似文献   

6.
本文在重点考虑TiNi合金高弹性变形量的前提下,采用等向强化模型,对不锈钢和超弹TiNi合金在法向接触载荷作用下的六种模型进行了有限元(FEM)分析。结果表明:在相同载荷条件下,超弹TiNi合金产生的von Mises弹性应变要高于不锈钢,但其von Mises应力和塑性应变却恰恰相反,在同一载荷下该合金发生塑性变形的区域要小于不锈钢;此外,超弹TiNi合金发生塑性变形要比不锈钢困难,所需的临界载荷值随其最大弹性变形量(屈服点处的应变值)的增加而增加。最后,基于本文的有限元计算结果对超弹TiNi合金的蘑粒磨损和疲劳磨损机制进行了讨论。  相似文献   

7.
An understanding into the macro kinetic and kinematic behaviour of fretted surfaces is provided. Making use of a modified version of a previously developed in‐house two‐dimensional elastic–plastic finite element analysis numerically simulates flat contact pad fretting fatigue tests. Basic macro mechanics concepts are adopted to idealise two bodies with rough contact surfaces and loaded at two different sites with arbitrary axial loading profiles. A time scale factor is devised to recognise the earliest candidate out of the events possibly accommodated at each loading increment. The present analysis utilises a relevant experimental set up developed in the Structural Integrity Research Institute of the University of Sheffield as an application. Computational results accurate to within 1.2% and corresponding to one contact pad span and six constant normal loads acting individually with four amplitudes of two sinusoidal axial load cycles are presented. The present computations include (1) the development of the global and local normal and tangential reactions and relative sliding displacement acting along the fretting surfaces and (2) contact pad deformation, generated stress fields and plasticity development within the neighbouring region of the fretted area.  相似文献   

8.
利用有限元分析软件ANSYS模拟了6082-T6铝合金回填式搅拌摩擦点焊接头在不同载荷作用下的应力场,进而分别运用名义应力法和局部应力-应变法计算得到当前载荷水平下的疲劳寿命。结果表明:在较大的载荷水平下,应力法分析结果与试样实际寿命接近,在较小的载荷水平下,局部应力-应变法分析结果与试样实际寿命接近;试样疲劳寿命随焊点间距的增加而减小。通过分析6082-T6铝合金回填式搅拌摩擦点焊接头疲劳断口形貌,发现疲劳裂纹起裂于焊点根部的热影响区和热力影响区,同时沿上板焊点边缘和下板母材处横向扩展。  相似文献   

9.
Cables are used in many engineering applications, whether considered as stationary or running cables. In the latter, ropes are subjected to repeated tension and bending as they run over a sheave wheel. Such loading scenarios are seen for large mining equipment such as draglines and shovel hoist ropes. Fretting fatigue failure often occurs after several cycles of loading because of wires rubbing against each other and external wires rubbing against sheave wheels. It is also pertinent to understand the behaviour of cables subjected to bending over sheaves, to be able to predict fretting fatigue life, so as to set preventive maintenance activities to avoid catastrophic failure in such systems. In this paper, the behaviour of 2 specific configuration strands, composing either 7 or 19 wires, bent over a sheave is investigated numerically. To aid preventive maintenance inspection, critical locations of stress concentrations are identified as a function of applied load or tensile stress. The investigation also considers the impact of groove size, diameter of sheave to diameter of cable ratio, and contact length, enabling the application to infer fatigue life.  相似文献   

10.
Based on the finite element simulation, the crack nucleation location and failure life of bending fretting fatigue are analysed and predicted for LZ50 axle steel, respectively. In the simulation, a simplified two‐dimensional finite element model with an equivalent normal force is proposed and the role of ratchetting is also considered by using a new cyclic elastoplastic constitutive model. The crack nucleation location and fatigue life are finally predicted by Smith–Watson–Topper (SWT) critical plane criteria referring to the finite element calculation. It is shown that the predicted results are in fairly good agreement with the experimental ones.  相似文献   

11.
目的 探究释放程度和支架结构对支架疲劳寿命的影响。方法 利用有限元法分析3款镍钛合金下肢动脉支架(Complete SE、E–luminexx–B和Pulsar–35)在脉动载荷作用下的力学性能,基于疲劳应变理论评估支架的疲劳强度,使用Fe–safe和Abaqus软件预测支架在不同释放程度(80%、85%、90%)下的疲劳寿命及安全性。应用Origin软件对支架应力与疲劳寿命进行拟合。结果 支架在释放尺度为80%~90%下的疲劳强度均满足10年疲劳寿命的要求。3种支架释放程度为90%时,疲劳强度大,寿命长;释放程度为80%时,疲劳强度、寿命及安全系数小。相同释放程度下,偏置型波峰结构支架变形后的交变应变及弹性应力值最大,支架寿命及安全系数最小;对称型波峰结构支架CE的寿命及安全系数小于EB。通过LangevinMod函数拟合PR支架疲劳寿命,拟合优度R2>0.99。结论 随着释放程度的增大,3款支架疲劳强度、寿命及安全系数呈增大趋势。在相同释放程度下,支撑单元对称型波峰结构支架疲劳强度、寿命及安全系数比偏置型波峰结构支架大,减小对称型波峰结构支架的连接体宽度有利于提高支架寿命。  相似文献   

12.
为了探究环氧沥青混凝土加铺层这种快速、有效的机场道面修建技术,利用ANSYS有限元程序,基于足尺多板体系,考虑了结构层之间不同的接触状态以及旧道面板之间的传荷能力,对复合道面结构层间受力状态进行了分析,结果表明:旧水泥混凝土道面板与基础之间的接触状况对加铺层弯沉影响略大,环氧沥青混凝土与旧水泥混凝土道面板之间的接触状况对复合道面结构应力指标影响明显,增强加铺层界面粘结强度能够改善复合道面结构受力状态,因此,在进行加铺层设计时要考虑选取合理的层间接触状态。  相似文献   

13.
应用表面位移原位分析技术对由泡沫金属铝芯和金属面板组成的三层复合板在循环弯曲载荷条件下的损伤行为进行了观察和研究。循环弯曲载荷条件下复合板失效的基本方式是表面凹陷(Indentation,ID)和泡沫铝内芯切断(Coreshear,CS)。凹陷型失效是与加载压头接触的复合板表面局部压缩密切相关,该处沿垂直方向的压缩应变最大。内芯切断型失效是泡沫铝内芯中切应变最大的区域发生的剪切破坏。在疲劳应力比R=0时,复合板凹陷型失效的疲劳极限高于内芯切断型失效的疲劳极限。  相似文献   

14.
This paper is aimed at evaluating the behaviour of small cracks emanating from notches in the Ti‐6Al‐4V alloy. Pulsating four point bending tests were performed at a nominal stress ratio of 0.1 and a frequency of 15 Hz on prismatic specimens with a central hole. The conditions of initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 56.6 and 100% of the 0.2% yield stress of the material. Microstructural effects were discussed. To this purpose a specific device based on the ‘in situ’ detection of cracks by photomicroscopy was developed. Corresponding results were analysed quantitatively considering the effect of the yielded region at the notch tip by elastic–plastic finite element modelling. Furthermore, information regarding the sites of fatigue crack initiation and propagation path were discussed on the basis of careful fractographic analysis of the specimens. The importance of the two phase α, β microstructure on the material damage was highlighted and correlated to the observed oscillations in the crack growth rate. Mechanically and microstructurally long cracks were correlated by linear‐elastic fracture mechanics.  相似文献   

15.
基于MSC.Fatigue的汽车驱动桥壳疲劳寿命预估   总被引:3,自引:0,他引:3       下载免费PDF全文
运用三维造型软件Pro/Engineer Wildfire2.0建立某型商用车驱动桥后桥壳的实体模型.依据有限元基本理论,进一步建立该桥壳的有限元模型,并在通用有限元分析系统MSC.Nastran中进行有限元应力分析.基于应力分析结果,采用有效的疲劳寿命预估方法,利用专业耐久性疲劳寿命分析系统MSC.Fatigue对该桥壳进行全寿命分析,得到桥壳整体的疲劳寿命分布和危险点的寿命值.通过与台架疲劳试验的桥壳失效情况相对比,预估结果与试验结果一致.而后对在试验中发生破坏的桥壳进行疲劳断口的微观分析.最终在试验与仿真分析结果的基础上提出对该型桥壳生产的改进方案。  相似文献   

16.
Based on the characteristics of the sliding surface, sliding direction, and fatigue damage mechanism of metal materials, the mechanical model of a body–bar–plate structure is proposed with consideration to the plastic damage mechanism. The elastoplastic constitutive equations and damage constitutive equations of the face-centered cubic (FCC) structure subjected to multiaxial cyclic loading were derived, and the damage evolution law of the body–bar–plate mechanical model was investigated. Then, the meso-damage evolution equation was established under multiaxial nonproportional loading. Subsequently, the relationship between the fatigue performance and microstructure under multiaxial nonproportional loading was investigated, and a damage mechanics–finite element method (FEM) with consideration to the damage evolution is proposed. The proposed model and method provide a new approach for predicting the fatigue life of metal materials.  相似文献   

17.
目的 研究钛合金性能参数与约束因子和代表应变的关系。方法 对不同性能参数条件下压痕变形过程进行有限元仿真,根据模拟结果建立约束因子和代表应变与材料性能间的定量关系。结果 发现钛合金屈服强度与压痕硬度之间存在线性关系。约束因子随着弹性模量的增加而增加,代表应变随着弹性模量的增加而减小。当弹性模量固定不变时,约束因子随屈服强度线性减小,代表应变固定不变。在材料性能范围内,使用代表应变求解的代表应力,与通过压痕硬度和约束因子求解的代表应力两者误差小于±3%。结论 材料性能不同,约束因子和代表应变的值也会变化,这两个参数并不存在统一的值。  相似文献   

18.
This paper presents the details of S–N curve for aluminium alloy (Al) A356.2‐T6 and fatigue life of alloy wheels under bending load of cornering fatigue test (CFT). Development of S–N curve has been carried out by conducting rotary bending fatigue test at different stress levels as per Standards IS 5075. The rotary bending fatigue test has been performed under constant amplitude fatigue loading. The CFT of the wheel in normal driving mode has been carried out as per the procedure given in Japanese Industrial Standard Disc Wheels (JIS D_4103). It has been observed from the test that the cracks are initiated at the spoke and hub joining area closer to spanner hole on the front face of the wheel. Fatigue life of the alloy wheel has been predicted by finite element analysis (FEA), simulating the realistic test conditions. From finite element analysis, it has been observed that the maximum stress occurs at the mounting face of the wheel. Further, it has been observed that there is significant difference between the computed fatigue life and experimental value. Parametric study has been carried out for reliable fatigue life estimation and proposed an appropriate safety factor for fatigue life estimation under rotary bending test.  相似文献   

19.
This study evaluated the effect of the pavement design parameters on the behaviour of orthotropic steel bridge deck pavements under traffic loading using a three-dimensional finite element model. Four types of paving materials were considered in this analysis: polymer concrete, epoxy asphalt concrete, polymer-modified stone mastic asphalt concrete and mastic asphalt concrete. The maximum transverse tensile strain was developed at the bottom of the pavement under a tyre of dual tyres or on top of the pavement between two tyres. From the sensitivity analysis, better interface bonding between the deck plate and pavement led to a significant enhancement of bottom-up fatigue cracking resistance, especially for 40-mm-thick pavements. As pavement temperature increased from ? 20 to 60°C, critical tensile strain increased significantly, and corresponding locations moved from the bottom to the top of the deck pavement.  相似文献   

20.
Fatigue strength optimization of cast aluminium alloys requires an understanding of the role of micropores resulting from the casting process. High cycle fatigue tests conducted on cast A356‐T6 show that the pore size and proximity to the specimen surface significantly influence fatigue crack initiation. This is supported by finite element analyses (both elastic and elastic–plastic) which demonstrate that high stress/strain concentration is induced by pores which are both large and near to the specimen surface. A new pore‐sensitive model based on a modified stress‐life approach has been developed which correlates fatigue life with the size of the failure‐dominant pore. The model prediction is in good agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号