首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
The effect of a sputtered TiAlCr coating on the oxidation resistance of TiAl intermetallic compound was investigated in static air. The bare TiAl alloy exhibited poor isothermal and cyclic-oxidation resistance at 800–1000°C due to the formation of TiO2-base scales which tend to spall during cooling. A sputtered Ti-50Al-10Cr coating remarkably improved the oxidation resistance of TiAl, due to the formation of an adherent Al2O3 scale at 800–1000°C. After long-term oxidation (at 900°C for 1000 hr), TiAlCr coating still provided excellent protection for the TiAl alloy. Minor interdiffusion occurred due to the inward diffusion of Cr, while no Kirkendall voids were found at the coating/ substrate interface. In contrast, NiCrAlY and CoCrAlY coatings reacted extensively with the TiAl alloys. Moreover, the TiAlCr coating alloy is based on -TiAl and TiAlCr Laves phases, which may offer improved mechanical properties. The TiAlCr coating exhibited a better combination of oxidation resistance and substrate compatibility than conventional aluminide and MCrAlY coatings.  相似文献   

2.
Effect of chromium on the oxidation resistance of TiAl intermetallics   总被引:1,自引:0,他引:1  
The effect of 10 at.%Cr on the oxidation resistance of TiAl intermetallic compound at 800–1100°C in air was investigated. The results indicated that 10 at.%Cr equally substituting for Ti and Al in TiAl alloy had duplex effects on the isothermal kinetics of DAL At lower temperatures (800–900°C), Cr increased the oxidation rates as a result of the doping effect of Cr in the scale and at higher temperatures (1000–1100°C), especially at 1100°C, Cr significantly reduced the oxidation rates as a result of the formation of a continuous Al2O3 film on the surface. 10 at.%Cr only substituting for Ti in TiAl alloy remarkably reduced the oxidation rates at all temperatures by about two orders of magnitude. Moreover, 10 at%Cr significantly improved the cyclic-oxidation rsistance of TiAl alloy.  相似文献   

3.
High-temperature oxidation resistance of sputtered micro-grain superalloy K38G   总被引:24,自引:0,他引:24  
The oxidation of sputtered and cast superalloy K38G specimens was studied. The sputtered alloy was microcrystalline, with an average grain size <0.1 m. The mass gains of the sputtered alloy were much less than those of the cast alloy at 800, 900, and 1000°C up to 500 hr, and were even less than those of pack aluminide on the cast alloy. K38G is a chromia-forming cast nickel-base superalloy, so the oxide scale formed on it is composed of Cr2O3, TiO2, Al2O3, and a spinel. The oxide scale formed on the sputtered alloy was Al2O3. This scale is thin, compact, and adherent. This result implied that micro crystallization reduced the critical aluminum content necessary to form alumina on the surface of this superalloy. No oxide spoliation, as typically observed for cast of aluminized alloys, occurred on the sputtered superalloy. The reduction of the critical aluminum content for the formation of alumina and the improvement of the spoliation resistance may be attributed to the microcrystalline structure formed during sputtering. The numerous grain boundaries favor outward aluminum grain-boundary diffusion, provide increased nucleation sites, and reduced stresses in the oxide scales.  相似文献   

4.
Isothermal and cyclic oxidation resistance at 1000°C in air were investigated for a cast Cr-containing Ni3Al-base alloy and its sputtered nanocrystalline coating. The results indicated that both the cast Ni3Al alloy and its sputtered coating exhibit excellent isothermal oxidation resistance as a result of the formation of Al2O3 scales. However, the cast alloy possesses very poor cyclic oxidation resistance because of the spallation of the initially formed Al2O3 scale during cooling and subsequent formation of NiO. On the contrary, the sputtered Ni3(AlCr) nanocrystalline coating exhibits very good cyclic oxidation resistance due to the significant improvement of the adhesion of Al2O3.  相似文献   

5.
The corrosion resistance of the cast superalloy K38G and a sputtered nanocrystalline coating of the same material was investigated in pure CO in the temperature range, 850–1000°C and in CO-20 vol.% CO2 at 900°C. The cast K38G alloy formed Cr2O3 and TiO2 scales, and a zone of internal Al2O3 precipitation. Weight-gain kinetics followed the parabolic rate law under all conditions investigated. The sputtered K38G nanocrystalline coating, however, formed a single-phase Al2O3 scale and no internal-oxidation zone. The parabolic rate constants for nanocrystalline coating oxidation were about one order of magnitude smaller than those of the cast alloy. The changes in reaction morphology and rate are attributed to the more rapid grain-boundary diffusion of aluminum in the nanocrystalline material.  相似文献   

6.
Isothermal-oxidation characteristics of cast irons containing aluminum (5–15% Al) from 700 to 1000°C in air have been studied. In addition to massgain measurements, the morphology and composition of the oxide scales have been examined by SEM-EDX system and XRD analysis. A normal Fe–5Al–C alloy does not develop protective, adherent scales. Even the addition of misch metal and calcium silicide to such an alloy does not improve its oxidation resistance. But aluminum cast iron develops considerable oxidation resistance only when a sufficient quantity of silicon is also present in the alloy. Treatment of the alloy with misch, metal and calcium silicide together assists in protective scale formation. Among the alloys investigated Fe–15Al–Si–C treated with misch metal and calcium silicide shows minimum oxidation at 1000°C.  相似文献   

7.
Gao  W.  Li  Z.  Zhang  D. 《Oxidation of Metals》2002,57(1-2):99-114
Ti3Al(O)–Al2O3 composites were fabricated in situ using a mechanical-alloying and reaction-sintering technique. Their oxidation behaviors were studied in air at 700–900°C. The oxidation rates were much lower than those of Ti3Al. The behaviors of isothermal and cyclic oxidation were very similar. The oxide scales that formed exhibited excellent spallation resistance under all testing conditions. No scale cracking or spallation could be observed, even along the edges or corners of the samples, implying that growth and thermal stresses generated during heating and cooling periods had been effectively released. The mechanisms of the decrease in oxidation rate and the improvement on spallation resistance are discussed based on microstructure studies. This composite has advantages of light-weight, simple fabrication from inexpensive materials, and superior high-temperature oxidation resistance; it may provide opportunities to be used in some high-temperature structural applications.  相似文献   

8.
Shankar Rao  V.  Raja  V. S.  Baligidad  R. G. 《Oxidation of Metals》2002,57(5-6):449-471
Electroslag, remelted-iron aluminides having the compositions: (1) Fe–16Al–0.05C, (2) Fe–16Al–0.14C, (3) Fe–16Al–0.5C, and (4) Fe–16Al–1.0C were investigated to understand the effect of carbon on their oxidation behavior in the temperature range 700–1000°C. The oxidation behavior of these aluminides was compared with that of 310 SS, a reference alloy used in the study. Regardless of carbon content, the iron aluminides exhibit marginally higher oxidation tendency than that of 310 SS at 700°C. However, between 800 and 1000°C, they exhibit better oxidation resistance than 310 SS. Although the oxidation resistance of aluminides at 1000°C is better than that of 310 SS, they suffer severe spallation during long-term exposure and C exacerbates this effect. Examination of the early stages of oxidation of the alloys at 800 and 900°C shows that they do not gain a corresponding weight as they do for a temperature rise from 700 to 800°C. A further rise to 1000°C leads to a marginal inversion in the oxidation tendency of the alloys. Based on the literature, this inversion is attributed to the possible dissolution and/or change in compo- sition of Fe3AlC0.69 carbide phase with temperature.  相似文献   

9.
Z.W. Li  D.L. Zhang 《Corrosion Science》2004,46(8):1997-2007
A TiAl-based intermetallic matrix composite has been produced through sintering of mechanically milled Al/TiO2 composite powder. The composite contains 42-50 vol.% of α-Al2O3 as the particulate reinforcement phase. Oxidation experiments were carried out at 800-900 °C in air up to 500 h to evaluate its oxidation and scale spallation resistance. A cast Ti-50at.%Al alloy was also tested for comparison. The composite samples showed much lower oxidation mass gain than the cast alloy under all testing conditions. Moreover, the composite samples exhibited extremely strong scale spallation resistance. Spallation could never be recorded and observed even under long-time intensive cyclic oxidation exposure. Based on the kinetic and microstructural studies, the mechanisms for the improved oxidation and spallation resistance are discussed.  相似文献   

10.
The mechanism of scale adhesion on sputtered microcrystallized CoCrAl films   总被引:1,自引:0,他引:1  
The oxidation mechanisms of sputtered microcrystalline Co–30Cr–5Al coatings were investigated by an acoustic emission technique, scatch test, transmission electron microscope (TEM), which was compared with CoCrAlY alloy. The results indicated that the beneficial effects of microcrystallization on the scale adhesion of Co–30Cr–5Al alloy are as follows: (1) The sputtered CoCrAl coating possesses a columnar structure, and oxidation along the columnar grains may form many micropegs which can anchor the scale to the metallic substrate, enhancing bonding of the scale. (2) The grain size of the sputtered coating is several orders of magnitude smaller than that of the cast alloy, and the grain size of oxide scales formed on the former is finer than that of the latter. The finer oxide scale may relieve the growth stresses during isothermal oxidation and partial thermal stresses during cooling by plastic deformation through grain sliding. The microcrystalline coating is more plastic than the cast alloy, which may relieve a certain amount of thermal stresses of the oxide scales. On the basis of oxide adhesion and plasticity, microcrystallization is more beneficial than the addition of reactive elements.  相似文献   

11.
The oxidation behavior of mechanically alloyed microcrystalline NbCr2 intermetallics was investigated at 950-1200 °C in air by SEM in comparison with coarse-grain cast alloys. Results indicate that the mechanically alloyed alloys possess a better oxidation resistance and are less permeable to nitrogen than the cast alloys. At 1200 °C, the mechanically alloyed NbCr2 alloys show a better resistance to scale spallation than the cast materials. The differences observed above are attributed to the finer grains increasing the relaxation of the oxide scale stress and improving the adhesion of the oxide layer on the matrix.  相似文献   

12.
Effect of a sputtered Co-30Cr-5Al microcrystalline coating on oxidation resistance ofintermetallic compound TiAl and oxidation behavior of the bare TiAl were investigatedat 900—1000℃ in static air.The oxidation kinetics for the TiAl alloy seems toapproximately follow a linear rate law.Poor oxidation resistance of TiAl is due to theformation of the mixed Al_2O_3+TiO_2 scale which is loosely packed and easily spalledoff.but not of dense and adherent pure Al_2O_3.A sputtered Co-30Cr-5Al coating,30μm thickness,can remarkably improve the oxidation resistance of TiAl owing to theformation of adherent Al_2O_3 protective scale.However,many Kirkendall voids wereformed between coating and substrate.  相似文献   

13.
磁控溅射Ni_3(AlCr)微晶涂层的抗氧化性能   总被引:1,自引:0,他引:1  
研究了铸态Ni3(AlCr)合金及其微晶溅射涂层在900—1000℃下的高温氧化性能,结果表明:铸态Ni3(AlCr)合金在氧化过程中,开始形成以Al2O3为主含有少量NiAl2O4的氧化膜,但氧化膜的粘附性很差,在冷却时很容易剥落,在继续氧化过程中合金表面将形成NiO膜,由于NiO的保护性较差,合金表现出“失稳氧化”行为。而溅射微晶Ni3(AlCr)涂层表面形成的氧化膜与基体粘附良好,冷却过程中未发生剥落。长时间氧化后表面氧化膜只由Al2O3和NiAl2O4组成,未出现NiO,因此溅射微晶化合金的抗氧化  相似文献   

14.
Ni3Al+5% Cr and Ni3Al+5% Cr+0.3% Y (wt.%) microcrystalline coatings were produced using a close-field, unbalanced magnetron-sputter deposition (CFUMSD) technique. Isothermal and cyclic-oxidation tests were carried out to assess the oxidation resistance of the coatings. The results showed that Al2O3 formed on the coatings as the main oxidation products, with the formation of - and -Al2O3 scales at 900 and 1200°C, respectively. The spallation resistance of the Al2O3 scales formed on the coatings was superior to the oxide scales formed on cast Ni3Al. After oxidation, interfacial voids were observed on the oxide–metal interface of the cast alloy while no voids were found on the coating surfaces. On the basis of the enhancement of Al diffusion, because of the high density of grain boundaries in the coatings, oxidation mechanisms were proposed.  相似文献   

15.
The oxidation behavior of candidate cast irons and cast stainless steels for diesel exhaust systems was studied for 5,000 h at 650–800 °C in air with 10 % H2O. At 650 °C, Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation at 700 °C, whereas the oxide scales formed on SiMo cast iron remained relatively adherent from 700 to 800 °C. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization for the higher 25Cr/20–35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for exhaust system components are discussed.  相似文献   

16.
The high-temperature oxidation behavior of an oxide dispersion-strengthened (ODS) Fe3Al alloy has been studied during isothermal and cyclic exposures in oxygen and air over the temperature range 1000 to 1300°C. Compared to commercially available ODS–FeCrAl alloys, it exhibited very similar short-term rates of oxidation at 1000 and 1100°C, but at higher temperatures the oxidation rate increased because of increased scale spallation. Over the entire temperature range, the oxide scale formed was -Al2O3, with the morphological features typical of reactive-element doping and was similar to those formed on the ODS–FeCrAl alloys. Although initially this scale appeared to be extremely adherent to the Fe3Al substrate, an undulating metal–oxide interface formed with increasing time and temperature, which led to cracking of the scale in the vicinity of surface undulations accompanied by a loss of small fragments of the full-scale thickness. In some instances, the surface undulations appeared to have resulted from gross outward local extrusion of the alloy substrate. Similar features developd on the FeCrAl alloys, but they were typically much smaller after a given oxidation exposure. The ODS–Fe3Al alloy has a significantly larger coefficient of thermal expansion (CTE) than typical FeCrAl alloys (approximately 1.5 times at 900°C) and this appears to be the major reason for the greater tendency for scale spallation. The stress generated by the CTE mismatch was apparently sufficient to lead to buckling and limited loss of scale at temperatures up to 1100°C, with an increasing amount of substrate deformation at 1200°C and above. This deformation led to increased scale spallation by producing an out-of-plane stress distribution, resulting in cracking or shearing of the oxide.  相似文献   

17.
A Cr2AlC coating was deposited on a β-γ TiAl alloy. Isothermal oxidation tests at 700 °C and 800 °C, and thermocyclic oxidation at 800 °C were performed in air. The results indicated that serious oxidation occurred on the bare alloy. Thick non-protective oxide scales consisting of mixed TiO2 + α-Al2O3 layers formed on the alloy surface. The coated specimens exhibited much better oxidation behaviour by forming an Al-rich oxide scale on the coating surface during the initial stages of oxidation. This scale acts as diffusion barrier by effectively blocking the ingress of oxygen, and effectively protects the coated alloys from further oxidation.  相似文献   

18.
Yang  Songlan  Wang  Fuhui  Wu  Weitao  Niu  Yan 《Oxidation of Metals》2001,56(1-2):33-49
The effect of a microcrystalline NiAl coating prepared by magnetron sputtering on the high-temperature oxidation resistance of a NiAl–TiC (20 vol.%) composite was investigated in air at 1000 and 1100°C. It was found that the isothermal as well as the cyclic oxidation resistance of the NiAl–TiC composite were greatly improved by the microcrystalline NiAl coating. The oxide scale formed on the NiAl–TiC composite was composed mainly of TiO2. On the contrary, the scales formed on NiAl–TiC coated with microcrystalline NiAl were only Al2O3.  相似文献   

19.
The isothermal and cyclic oxidation behavior of Ti-47Al-2Mn-2Nb with 0.8 vol.% TiB2 particle-reinforced alloy was investigated in air between 700 and 1000 °C. In the study, the kinetics of isothermal and cyclic oxidation were performed by using a continuous thermogravimetric method which permits mass change measurement under oxidation conditions. The oxide scales and substrates were characterized by scanning electron microscopy with energy-dispersive x-ray analysis and x-ray diffraction. At 700 and 800 °C, the alloy showed an excellent oxidation resistance under isothermal and cyclic conditions. After exposure to air above 800 °C, the outer scale of the alloy was dominated by a fast-growing TiO2 layer. Under the coarse-grained TiO2 layer was the Al2O3-rich scale, which was fine-grained. At 900 and 1000 °C, the extent of oxidation increased clearly. The oxidation rate follows a parabolic law at 700 and 800 °C. However, the alloy, upon isothermal oxidation at 900 °C, can be divided into several stages. During the cyclic oxidation at 900 and 1000 °C, partial scale spallation takes place, leading to a stepwise mass change.  相似文献   

20.
To understand the effect of sulfur on the oxidation of nanocrystalline (NC) alloys, a high-sulfur alloy having a chemical composition similar to a coarse-grained (CG) cast alloy of Ni-25Cr-5Al-1S (wt.%) was fabricated using magnetron sputtering. The oxidation of the two alloys in isothermal and cyclic conditions in air at 1000 °C shows that the alumina scale formed on the cast alloy was susceptible to spallation, whereas the alumina scale on the sputtered alloy was intrinsically adhesive. The result indicates that the nanocrystallization of alloys helps to eliminate the detrimental “sulfur effect” on oxidation, through minimizing the segregation of sulfur to the scale/alloy interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号