共查询到18条相似文献,搜索用时 93 毫秒
1.
设计并建立了光纤Bragg光栅(FBG)温度传感实验装置,在20~260℃温度范围内对掺Ge单模FBG进行温度传感性能测试。通过比较升温与降温过程各相同温度点FBG中心反射漂移差,发现FBG对温度响应具有滞后性,滞后时间随温度的升高而减小。理论系统分析了滞后原因及规律,并提出了解决方法。 相似文献
2.
3.
光纤Bragg光栅应变传感研究 总被引:4,自引:0,他引:4
基于光纤Bragg光栅应变传感模型 ,利用泰勒级数展开法 ,将光纤Bragg光栅反射峰中心波长所满足的Bragg方程展开 ,得到了中心波长相对偏移量与应变增量之间的二次解析关系式 ,进而得到了光纤Bragg光栅一阶、二阶应变灵敏度系数的解析表达式 ,计算了一阶、二阶应变灵敏度系数的理论值 ;并将光纤Bragg光栅粘贴在悬臂梁上进行拉伸和压缩 ,得到了与应变对应的光纤Bragg光栅中心波长偏移量 ,通过线性和二次多项式拟合 ,得到了光纤Bragg光栅一阶、二阶应变灵敏度系数的实验值 ;各阶应变灵敏度系数的理论值与实验值吻合得到很好 相似文献
4.
裸光纤Bragg光栅的温度传感特性研究 总被引:1,自引:0,他引:1
从理论上分析了光纤Bragg光栅的温度传感原理,并通过实验对裸光纤Bragg光栅的常温温度特性进行了测试。实验结果与理论分析基本一致,证明裸光纤Bragg光栅在常温下的中心波长与温度变化呈良好的线性关系,为其用作温度传感器提供了理论和实验依据。最后,指出了光纤Bragg光栅温度传感器在实际工程化应用中所需要解决的问题。 相似文献
5.
6.
7.
8.
9.
分析了掺Er光纤激光器(EDFL)的基本原理和光纤Bragg光栅(FBG)传感机理,组建了一种基于环形腔EDFL的FBG传感系统,其中FBG既作为滤波器起波长选择、又充当传感器起感测外界温度压力变化的作用.实验研究了经过温度增敏工艺处理过的FBG温度特性,传感系统温度分辨率优于0.3℃.换用荧光光源和经悬臂梁粘贴增敏处理的FBG,对比了在相同作用力下采用该系统前、后输出传感信号的光谱形状,结果表明,该技术方法可以有效消除FBG的啁啾对传感信号的影响,方法简单、信噪比高,适用于中远距离的FBG传感测量系统. 相似文献
10.
11.
光纤Bragg光栅封装后的温敏特性研究 总被引:1,自引:0,他引:1
介绍了光纤光栅封装前后的温度传感特性,并进行了对比实验.实验表明,作为温度传感器的光纤Bragg光栅封装后.其波长除受到温度变化影响外,还受其所附着的封装材料对其产生轴向应力作用.因此,通过选择适当的封装材料.进行合理的封装工艺处理,可以使封装后的光纤Bragg光栅温度传感器的波长变化与其所处的温度场的变化呈现一种线性关系,而且提高了传感器的温敏特性. 相似文献
12.
13.
为了研究镀Ni光纤布拉格光栅(FBG)的温度灵敏度,根据镀Ni FBG的特点,分析了镀Ni FBG温度变化时的应力应变,从理论上推导出镀Ni FBG的温度灵敏度公式并通过实验进行了验证,用理论证明了镀Ni FBG的波长漂移、应力和应变与温度变化成线性关系,分析了镀Ni FBG的温度灵敏度与镀层厚度的关系.用ANSYS软件对镀Ni FBG在温度变化时的应力应变进行了仿真.理论分析得到镀层厚度为4.56 μm的镀Ni FBG的温度灵敏度为14.3306 pm/℃,实验值为14.113 pm/℃.理论、实验和仿真得到了一致的结果. 相似文献
14.
15.
16.
设计了一种基于双光纤布喇格光栅的新型液位传感器,导出了双光纤布喇格光栅的波长漂移差与液位的关系.圆盘上受到的液体压力导致等腰三角形悬臂梁变形,从而导致安装在悬臂梁两边的光纤布喇格光栅的布喇格波长漂移.通过检测两个布喇格光栅的波长漂移差,得到被测液位.双光纤布喇格光栅通过补偿温度效应,解决了光纤布喇格光栅传感器的交叉敏感问题.该液位传感器的动态测量范围为2~3 000 mm.实验表明,双光纤布喇格光栅的中心波长随液位的增加分别向长波和短波方向漂移,而带宽几乎不变,实验和理论符合较好,该设计方案是切实可行的. 相似文献
17.
用相位掩膜方法制作了光纤Bragg光栅(FBG),实验研究了FBG波长从-60℃到20℃的低温变化特性。实验结果表明,在-55℃~十20℃区间,FBG中心波长与温度变化有着良好的线性关系和重复性;低于-60℃时,光栅中心波长急聚下降。 相似文献
18.
基于双光纤布拉格光栅的流速传感器 总被引:3,自引:0,他引:3
设计了一种基于双光纤布拉格光栅的新型流速传感器,它包括双光纤光栅压强传感机构和文丘里管.导出了双光纤布拉格光栅的波长漂移差与流速的关系.压强传感机构中的密闭铝箔管横截面两边的压力差导致等腰三角形悬臂梁变形,从而导致安装在悬臂梁两边的光纤布拉格光栅的布拉格波长漂移.通过检测两个布拉格光栅的波长漂移差,得到被测流体的流速.双光纤布拉格光栅通过补偿温度效应,解决了光纤布拉格光栅传感器的交叉敏感问题.该流速传感器的动态测量范围为8~200mm/s.实验表明,双光纤布拉格光栅的中心波长随流速的增加分别向长波和短波方向漂移,而带宽几乎不变,实验和理论符合得较好,该设计方案是切实可行的.Abstract: By using the fiber grating pressure sensing setup and Venturi tube,a novel flow velocity sensor based on double fiber Bragg gratings (FBGs) is proposed.The relationship between the flow velocity and the wavelength shift difference is derived.The pressure difference of the two sides of the cross section of the aluminum foil tube in the pressure sensing setup results in the distortion of an isosceles triangle cantilever structure.And the distortion results in the Bragg wavelength shift of the FBGs mounted at either side of the cantilever.By monitoring the wavelength shift difference of the two FBGs,the flow velocity can be obtained.The cross sensitive problem can be solved by compensating the temperature effect.Experimental results are in good agreement with theoretical analysis.The central wavelength of two FBGs shifts to the shorter and longer wavelength respectively with the rise of the flow velocity,while the bandwidth is almost unchanged.The experimental results verify the feasibility of the proposed sensor with a measurement range of 8~200 mm/s. 相似文献