首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthetic mixture of nine green leaf volatiles (GLVs) including linalool was tested on antennae of Ips typographus (L.) with coupled gas chromatographic–electroantennographic detection (GC-EAD). Strong responses were found to 1-hexanol, (Z)-3-hexen-1-ol, and (E)-2-hexen-1-ol. Weak responses were recorded to (E)-3-hexen-1-ol, (Z)-2-hexen-1-ol and linalool, while hexanal, (E)-2-hexenal and (E)-3-hexenyl acetate elicited no EAD responses. In a laboratory walking bioassay, the attraction of I. typographus females to a synthetic pheromone source was significantly reduced when a mixture of the three most EAD-active GLV alcohols was added to the source. Further reduction in response was obtained when these three alcohols were combined with verbenone (Vn). In field trapping experiments, a blend of 1-hexanol, (Z)-3-hexen-1-ol, and (E)-2-hexen-1-ol reduced I. typographus trap catches by 85%, while ca. 70% reduction of trap catch was achieved by Vn or a blend of (E)-3-hexen-1-ol, (Z)-2-hexen-1-ol, and linalool. The strongest disruptive effect was found when Vn plus a blend of the three most EAD active GLV alcohols was added to the pheromone trap (95% catch reduction). Adding the blend of the three most EAD active alcohols to pheromone-baited traps significantly reduced the proportion of males captured. These three GLV alcohols were also disruptive in the laboratory and in the field when tested individually. Hexanal, (E)-2-hexenal, and (Z)-3-hexenyl acetate were inactive both in the lab and in the field. Our results suggest that these nonhost green leaf alcohols may explain part of the host selection behavior of conifer-attacking bark beetles and may offer a source of inhibitory signals for alternative management strategy for forest protection.  相似文献   

2.
FemaleMicroplitis croceipes wasps were tested in a wind tunnel for their ability to orient to various concentrations of eight different green leaf volatile (GLV) substances [hexanal, (E)-2-hexenal, (E)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (E)-2-hexenyl acetate, (Z)-3-hexenyl acetate, (Z)-3-hexenyl propionate, and (Z)-3-hexenyl butyrate]. Overall, the esters elicited the greatest percentage of successful orientation flights, the alcohols elicited an intermediate response, and the aldehydes elicited a low response. The semilog dose-response curves were generally hill-shaped with high responses at medium release rates and low responses at high or low release rates. For the aldehydes, positive responses occurred at all GLV release rates between 0.01 and 100 nl/min. For some alcohols and esters, positive responses occurred at release rates as low as 1 pl/min and as high as 1μl/min. These data show thatM. croceipes wasps are strongly attracted to GLVs and are capable of orienting to GLV concentrations that would occur in nature when a caterpillar feeds on a green leaf. Hence, in nature, GLVs may be important clues, enablingM. croceipes to locate their hosts.  相似文献   

3.
We tested the hypothesis that green leaf volatiles act as antiaggregants for the mountain pine beetle (MPB),Dendroctonus ponderosac Hopkins. In coupled gas chromatographic-electroantennographic detection (GC-EAD) analysis MPB antennae responded to 30 ng doses of all six-carbon green leaf alcohols tested [1-hexanol, (E)-2-hexen-1-ol, (Z)-2-hexen-1-ol, (E)-3-hexen-1-ol, and (Z)-3-hexen-1-ol], but not to the aldehydes, hexanal or (E)-2-hexenal, or to alcohol or aldehyde homologues with more or fewer than six carbon atoms. In field trapping experiments a blend of green leaf alcohols [1-hexanol, (Z)-2-hexen-1-ol, (E)-3-hexen-1-ol and (Z)-3-hexen-1-ol] effectively disrupted the response to attractive semiochemicals; a blend of the aldehydes hexanal and (E)-2-hexenal was inactive. The two best disruptants. (E)-2-hexen-1-ol and (Z)-3-hexen-1-ol, reduced catches of both sexes to levels not significantly different from catches in unbaited control traps. They also reduced the attack on trees baited with attractive MBP pheromones to a level not significantly different from that on unbaited control trees. Neither of the clerid predators captured,Enoclerus sphegeus (F.) norThanasimus undatulus (Say), was repelled by green leaf volatiles. Our results suggest that green leaf alcohols are promising disruptants which may be used to supplement the antiaggregation pheromone, verbenone, in protecting single high-value trees as well as carefully selected stands with low-level populations of MPBs.  相似文献   

4.
We recorded electroantennograms of male and female Lygocoris pabulinus antennae to 63 insect and plant volatiles. EAGs were between 100 and 500 V. Overall, male EAGs were about twice the size of female EAGs. In both sexes, largest EAGs were recorded to (E)-2-hexenyl butanoate and (E)-2-hexen-1-ol. Response profiles were similar in both sexes. However, male antennae were more sensitive to a number of esters, especially the butanoates and pentanoates. Female antennae were more sensitive to nine of the 19 plant volatiles, i.e., to hexan-1-ol, heptan-1-ol, 1-octen-3-ol, 2-heptanone, (R)-carvone, linalool, geraniol, nerol, and methyl salicylate. Sexual differences in responses suggest that males are more sensitive to insect-produced pheromone-type compounds, whereas females are more sensitive to plant compounds for their orientation towards oviposition sites.  相似文献   

5.
The two-spotted stinkbug, Perillus bioculatus, is a predator of the Colorado potato beetle (CPB), Leptinotarsa decemlineata. Behavioral tests revealed that P. bioculatus is attracted to potato plants, Solanum tuberosum L. (Solanaceae), infested by the CPB. Electroantennograms from the antennae of P. bioculatus were recorded in response to compounds present in the headspace of CPB-infested potato plants. (Z)-3-Hexen-1-ol and 2-phenylethanol elicited the highest EAG amplitudes. Linalool, 4,8-dimethyl-1,3(E),7-nonatriene, nonanal, decanal, and (R)-(+)-limonene evoked lower EAG amplitudes. The major headspace components -caryophyllene and -selinene produced only weak EAG responses. Antennal sensitivity of the CPB to (Z)-3-hexen-1-ol was higher than that of P. bioculatus, whereas the stinkburg was more sensitive to 2-phenylethanol, -caryophyllene, (R)-(+)-limonene, and decanal. Among these compounds, 2-phenylethanol is of special interest since it was observed to be emitted by potato foliage only after being damaged by CPBs.  相似文献   

6.
Holotrichia parallela (Coleoptera: Scarabaeoidea) is a notorious pest of many crops. To improve the effectiveness of its female-produced sex pheromone (L-isoleucine methyl ester:(R)-(?)-linalool = 6:1), 14 plant volatiles, including dodecanoic acid, dodecanal, farnesol, α-farnesene, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexenyl acetate, (E)-2-hexenyl acetate, (R)-(+)-limonene, α-phellandrene, α-pinene, ocimene, methyl benzoate, and benzaldehyde, were individually evaluated using electroantennography and olfactometer assays. (E)-2-Hexenyl acetate and (Z)-3-hexenyl acetate were found to elicit the strongest responses in both males and females. Further testing of these two compounds in mixtures with the sex pheromone indicated that (E)-2-hexenyl acetate had a stronger synergistic effect than (Z)-3-hexenyl acetate. Field evaluations showed that mixtures of (E)-2-hexenyl acetate and the sex pheromone resulted in significantly higher catches than the sex pheromone alone. Using a 5:1 mixture of the sex pheromone and (E)-2-hexenyl acetate, the maximum number of females per trap per day was 14, showing a synergistic effect of a factor of four. For males, a 3:1 mixture of the sex pheromone and (E)-2-hexenyl acetate yielded a maximum number of 310 individuals per trap per day, equivalent to a synergistic effect of 175%. These results may provide the basis for the development of efficient pest management systems against H. parallela using plant volatiles and insect sex pheromones.  相似文献   

7.
The leaf volatiles emitted from four nonhost tree species of Ips typographus, i.e. Betula pendula, B. pubescens, Populus tremula, and Sambucus nigra, were collected outdoors by headspace sampling in situ and analyzed by GC-MS. Three major classes of compounds, aliphatics [mainly green-leaf volatiles (GLVs)], monoterpenes, and sesquiterpenes, existed in all the deciduous tree species investigated. In June, when the bark beetles are searching in flight for host trees, GLVs mainly consisting of (Z)-3-hexenyl acetate and (Z)-3-hexen-1-ol were the dominant constituents in B. pendula and S. nigra. In B. pubescens and P. tremula, sesquiterpenes (and their derivatives) and monoterpenes made up the major part of whole volatile blends, respectively. Surprisingly, sesquiterpene alcohols and other oxides released from B. pubescens in considerable amounts were not found in the closely related species, B. pendula. By August, both the total volatiles and individual compounds significantly decreased, mainly due to the maturation of leaves, since the light intensity and temperatures during sampling were the same as in June. There were almost no volatiles detected from P. tremula and S. nigra leaves in August. The total emissions from these deciduous species were significantly different among the species, with B. pubescens releasing 5–10 times more than other species. Under the conditions of constant light intensity and humidity, emissions of both total volatiles and most individual components of severed B. pendula and S. nigra branches (with fresh leaves) increased according to a saturation curve from 16°C to 40°C. Ips typographus antennae responded strongly to green leaf alcohols: (Z)-3-hexen-1-ol, 1-hexanol, and (E)-2-hexen-1-ol, but not to aldehydes or acetates in GC-EAD analyses of B. pendula and B. pubescens leaf volatiles. No antennal responses to monoterpenes, sesquiterpenes, or sesquiterpene oxides were found. These three antennally active GLVs emitted from nonhost tree leaves might be indicators of a wrong habitat in the host selection of conifer bark beetles.  相似文献   

8.
Olfactometer bioassays and electrophysiological studies showed that the lacewing, Chrysopa sinica, the aphid parasitoid, Aphidius sp., and the coccinellid, Coccinella septempunctata, all responded to volatiles from tea aphids, Toxoptera aurantii, to hexane or ether rinses of tea aphid cuticles, and to synomones released by aphid-damaged tea shoots, as well as to the tea shoot–aphid complex. Each natural enemy spent more time searching on a filter paper treated with tea aphid honeydew than on a blank control filter paper. The interaction between synomones from aphid-damaged shoots and kairomones from tea aphids enhanced the responses to the plant–host complex. There was a significant, logistic dose–response relationship between the number of natural enemies responding and the odor stimulus concentration. Volatile components from the plant–host complex, obtained by air entrainment, were identified by their mass spectra and retention times and confirmed by comparison with standard samples. These were (Z)-3-hexen-1-ol, benzaldehyde, (E)-2-hexenal, (Z)-3-hexenyl acetate, ocimene, linalool, geraniol, indole, and (E)-2-hexenoic acid. The main components in a hexane rinse from tea aphid cuticle were benzaldehyde, undecane, 2,5-hexanedione, 2,5-dihydrothiophene, linalool, 4-methyl-octane, and eicosane, whereas the main components from an ether rinse were (E)-2-hexenoic acid, heptadecane, pentadecane, eicosane, tetratetracontane, and nonadecane. Benzaldehyde elicited the strongest responses from natural enemies in the olfactometer and the largest electroantennogram (EAG) responses. While the amount of odor was small, Coccinella septempunctata was slightly more sensitive than Chrysopa sinica and Aphidius sp. An increase in doses of benzaldehyde, (E)-2-hexenal, and (Z)-3-hexenyl acetate caused the EAG responses of each natural enemy to decrease. When the doses of (Z)-3-hexen-1-ol, linalool, and geranoil increased, EAGs of Chrysopa sinica and Aphidius sp. increased, but EAGs of Coccinella septempunctata decreased. When the dose of indole increased, EAGs of Coccinella septempunctata decreased, but those of Aphidius sp. increased. This study demonstrates that tea shoot–aphid complexes emit volatile synomones, while the odors from tea aphids, aphid cuticle extracts, and tea aphid honeydew contain kairomones, to which the natural enemies show a logistic dose–response.  相似文献   

9.
The blend of volatile compounds emitted by bean plants (Phaseolus vulgaris) infested with greenhouse whitefly (Trialeurodes vaporariorum) has been studied comparatively with undamaged plants and whiteflies themselves. Collection of the volatiles and analysis by gas chromatography revealed more than 20 compounds produced by plants infested with whitefly. Of these, 4 compounds, (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, 3-octanone, and one unidentified compound were emitted at higher levels than from the undamaged control plants. Synthetic (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, or 3-octanone all elicited a significant increase in oriented flight and landing on the source by the parasitoid, Encarsia formosa, in wind tunnel bioassays. Two-component mixtures of the compounds and the three-component mixture all elicited a similar or, in most cases, a better response by the parasitoid, the most effective being a mixture of (Z)-3-hexen-1-ol and 3-octanone. These results demonstrate that E. formosa uses volatiles from the plant-host complex as olfactory cues for host location.  相似文献   

10.
A glass chamber designed specifically for collecting volatile chemicals from individual leaves of a plant in situ is described. The effectiveness of the chamber was demonstrated by collecting volatile chemicals from single leaves of two plant species, potato (Solanum tuberosum) and broad bean (Vicia faba), before and after mechanical damage. The glass chamber, in conjunction with thermal desorption, enables reduction of the entrainment time and thereby allows the monitoring of compounds released by leaf damage in successive 5-min periods. An intact broad bean leaf, in the middle of the day, produces small amounts of the green leaf volatiles (E)-2-hexenal and (Z)-3-hexen-1-ol. However, during the first 5 min after mechanical damage, large amounts of (Z)-3-hexenal, (E)-2-hexenal, and (Z)-3-hexen-1-ol are produced. The decline in production of (Z)-3-hexenal and (E)-2-hexenal is fast, and after 10 min, these compounds reach very low levels. (Z)-3-Hexen-1-ol shows an increase for the first 10 min and then a gradual decline. An intact potato leaf, in the middle of the day, produces very small amounts of the sesquiterpene hydrocarbons -caryophyllene and germacrene-D. After being damaged, the profile of released volatiles is different from that of broad bean. In potato, damage is associated with release of large amounts of green leaf volatiles and sesquiterpene hydrocarbons. Compounds such as (Z)-3-hexenal, (E)-2-hexenal, and (Z)-3-hexen-1-ol are released in high amounts during the first 5 min after damage, but after 10 min, these drop to very low levels. High release associated with damage is also observed for -caryophyllene, (E)--farnesene, germacrene-D, and -bisabolene. The highest level is reached 5 min after damage and 15 min later, these compounds drop to low levels. The significance of compounds released after plant damage is discussed.  相似文献   

11.
We investigated volatile infochemicals possibly involved in location of the generalist predatory mite Neoseiulus californicus to plants infested with spider mites in a Y-tube olfactometer. The predators significantly preferred volatiles from lima bean leaves infested with Tetranychus urticae to uninfested lima bean leaves. Likewise, they were attracted to volatiles from artificially damaged lima bean leaves and those from T. urticae plus their visible products. Significantly more predators chose infested lima bean leaves from which T. urticae plus their visible products had been removed than artificially damaged leaves, T. urticae, and their visible products. These results suggest that N. californicus is capable of exploiting a variety of volatile infochemicals originating from their prey, from the prey-foodplants themselves, and from the complex of the prey and the host plants (e.g., herbivore-induced volatiles). We also investigated predator response to some of the synthetic samples identified as volatile components emitted from T. urticae-infested lima bean leaves and/or artificially damaged lima bean leaves. The predators were attracted to each of the five synthetic volatile components: linalool, methyl salicylate, (Z)-3-hexen-1-ol, (E)-2-hexenal, and (Z)-3-hexenyl acetate. The role of each volatile compound in prey-searching behavior is discussed.  相似文献   

12.
Analyses of extracts of pheromone glands and of volatiles from calling female fall armyworm moths,Spodoptera frugiperda (J.E. Smith), revealed the presence of the following compounds: dodecan-1-ol acetate, (Z)-7-dodecen-1-ol acetate, 11-dodecen-1-ol acetate, (Z)-9-tetradecenal, (Z)-9-tetradecen-1-ol acetate, (Z)-11-hexadecenal, and (Z)-11-hexadecen-1-ol acetate. The volatiles emitted by calling females differed from the gland extract in that the two aldehydes were absent. Field tests were conducted with sticky traps baited with rubber septa formulated to release blends with the same component ratios as those emitted by calling females. These tests demonstrated that both (Z)-7-dodecen-1-ol acetate and (Z)-9-tetradecen-1-ol acetate are required for optimum activity and that this blend is a significantly better lure than either virgin females or 25 mg of (Z)-9-dodecen-1-ol acetate in a polyethylene vial, the previously used standard. Addition of the other three acetates found in the volatiles did not significantly increase the effectiveness of the two-component blend as a bait for Pherocon 1C or International Pheromones moth traps.Mention of a commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

13.
The extraction conditions of virgin olive oil have a great influence on its sensory quality. During the centrifugation process, temperature and time of malaxing can be altered to potentially affect quality. Malaxing times (15, 30, 45, 60, and 90 min) and temperatures (25 and 35°C) were studied in an experimental oil mill. Volatile compounds, produced through the lipoxygenase pathway (hexanal, Z-3-hexenal, E-2-hexenal, hexyl acetate, Z-3-hexenyl acetate, hexan-1-ol, E-3-hexen-1-ol, Z-3-hexen-1-ol, and E-2-hexen-1-ol), were analyzed by dynamic headspace gas chromatography, gas chromatographymass spectrometry, and gas chromatography-olfactometry. Different amounts of volatiles responsible for positive attributes of green aroma and negative attributes of astringent mouthfeel of virgin olive oil were determined. The results, after applying mathematical procedures, showed that a temperature of 25°C and a malaxing time between 30 and 45 min produced volatile compounds that contribute to the best sensory quality. High temperature (T≥35°C) with minimum values of time (t<30 min) could also be useful as an alternative way to obtain pleasant green virgin olive oils.  相似文献   

14.
Plant volatiles play an important role in the lives of phytophagous insects, by guiding them to oviposition, feeding and mating sites. We tested the effects of different host-plant volatiles on attraction of Lobesia botrana males to the female-produced sex pheromone, in a wind tunnel. Addition of volatile emissions from grapevines or individual plant volatiles to pheromone increased the behavioral responses of L. botrana males over those to pheromone alone. At a low release rate (under-dosed) of pheromone, addition of (E)-β-caryophyllene, (Z)-3-hexenyl acetate, 1-hexanol, or 1-octen-3-ol increased all behavioral responses, from activation to pheromone source contact, while addition of (E)-4,8-dimethyl-1,3,7-nonatriene, (E)-β-farnesene, (Z)-3-hexenol, or methyl salicylate affected only the initial behavioral responses. Dose–response experiments suggested an optimal release ratio of 1:1000 (sex pheromone: host plant volatile). Our results highlight the role of plant volatiles in the sensory ecology of L. botrana.  相似文献   

15.
The volatile compounds ofSolanum tuberosum L., a host plant of the Colorado beetle,Leptinotarsa decemlineata Say, were isolated by successive vacuum steam distillation, freeze concentration, and extraction. The main components aretrans-2-hexen-1-ol, 1-hexanol,cis-3-hexen-1-ol,trans-2-hexenal, and linalool. The distribution of these compounds in a variety of plant families and their biosyntheses are reviewed. These leaf volatiles constitute a general green leaf volatile complex, being active in the olfactory orientation of the Colorado beetle and as such are probably of importance to various phytophagous insects.  相似文献   

16.
The host range of the eucalyptus woodborer, Phoracantha semipunctata, is restricted mainly to species of Eucalyptus (Myrtaceae). Volatile semiochemicals possibly involved in host selection and nonhost rejection were identified by high-resolution gas chromatography–electroantennography on samples obtained by air entrainment of foliage from host and nonhost trees. Compounds from the main host E. globulus, active at physiologically significant levels, included 3-hydroxy-2-butanone, 3-methyl1-butanol, a branched epoxyalkane, ethyl 3-methylbutanoate, (Z)-3-hexen1-ol, -pinene, -pinene, p-cymene, 1,8-cineole, limonene, and guaiene. E. camaldulensis gave a similar spectrum of volatiles that also included -terpinene and linalool. The volatiles from E. tereticornis were similar to E. globulus but without ethyl 3-methylbutanoate, (Z)-3-hexen-1-ol, 1,8-cineole, or limonene. The nonhost Pinus pinaster (Pinaceae) yielded active compounds common to the host species, including ethyl 3-methylbutanoate, (Z)-3-hexen-1-ol, -pinene, -pinene, p-cymene, 1,8-cineole, limonene, and linalool but, in addition, myrcene, (E)--ocimene, and -cubebene as candidate nonhost cues. The nonhost Olea europeae (Oleaceae) also shared some active compounds in common with the host species, including 3-hydroxy-2-butanone, 3-methyl-1-butanol, the branched epoxyalkane, ethyl 3-methylbutanoate, (Z)-3-hexen-1-ol, -pinene, but an apparent nonhost cue from this species was the homomonoterpene (E)-4,8-dimethylnona-1,3,7triene, plus other compounds so far unidentified.  相似文献   

17.
Previous work showed that anthocorid predators aggregate around gauze cages containing Psylla-infested trees in a pear orchard. Because anthocorids responded to odor from Psylla-infested leaves in a laboratory test, it was hypothesized that these aggregative responses in the field were triggered by olfaction of compounds associated with Psylla injury. We present chemical analyses of volatiles from damaged and undamaged plants and studies on behavioral responses of anthocorid predators to compounds released by damaged plants. Leaf headspace volatiles from clean and Psylla-infested pear trees were collected on Tenax and identified by GC-MS after thermodesorption. Twelve volatiles were found exclusively in headspace samples from Psylla-infested leaves. Six were present in significantly higher quantities in samples from infested leaves: the monoterpene, (E,E)-α-farnesene, the phenolic, methyl salicylate, and the green leaf compounds, (Z)-3-hexen-1-yl acetate, (Z)-3-hexen-1-ol, 1-hexyl-acetate, and 1-penten-3-ol. These compounds are known to be produced by plants, and damage by pear psyllids seems to trigger their emission. Blend composition varied and was partly correlated with tree or leaf age and degree of Psylla infestation. To study whether compounds associated with leaf injury elicit olfactory responses in anthocorid predators, apple-extracted (E,E)-α-farnesene, synthetic methyl salicylate, and (Z)-3-hexen-1-yl acetate were offered in a Y-tube olfactometer to field-collected adult Anthocoris spp. Significant positive responses were found to both the monoterpene and the phenolic, but not to the green leaf volatile. The results lend support to the hypothesis that predator attraction to herbivore-infested pear trees is mediated by herbivory-induced plant volatiles.  相似文献   

18.
Previous laboratory studies have shown that the mirid Lygus hesperus is attracted to volatiles emitted from alfalfa; feeding damage increases the amounts of several of these volatiles, and visual cues can enhance attraction further. The present study tested single plant volatiles in electrophysiological and behavioral trials with L. hesperus. Electroantennogram (EAG) analyses indicated that antennae responded to most plant volatiles included in the test, and that when gender differences were observed, males usually were more responsive than females. Antennal responses to the alcohols ((E)-3-hexenol, (Z)-3-hexenol, 1-hexanol), the acetate (E)-2-hexenyl acetate, and the aldehyde (E)-2-hexenal were among the strongest. Moderate responses were observed for (E)-β-ocimene, (E,E)-α-farnesene, (±)-linalool, and methyl salicylate. A dose dependent response was not observed for several terpenes (β-myrcene, β-caryophyllene, (+)-limonene, or both (R)-(+)- and (S)-(−)-α-pinenes). EAG responses, however, were not always consistent with behavioral assays. In Y-tube bioassays, males did not exhibit a positive behavioral response to any of the compounds tested. Instead, males were repelled by (E)-2-hexenyl acetate, (±)-linalool, (E,E)-α-farnesene, and methyl salicylate. In contrast, female L. hesperus moved upwind towards (R)-(+)-α-pinene, (E)-β-ocimene, and (E,E)-α-farnesene, and showed a negative response towards (Z)-3-hexen-1-ol, (S)-(−)-α-pinene, and methyl salicylate. This study emphasizes the use of multiple approaches to better understand host plant finding in the generalist herbivore L. hesperus.  相似文献   

19.
Fifteen synthetic herbivore-induced plant volatiles (HIPVs) were field-tested for attractivity to beneficial insects in two experiments conducted in an open field and a hop yard in Washington State. Eleven insect species or families showed significant attraction to 13 HIPVs. The ladybeetle, Stethorus punctum picipes, was attracted to sticky traps baited with methyl salicylate (MeSA), cis-3-hexen-1-ol (He), and benzaldehyde (Be). The minute pirate bug, Orius tristicolor, was attracted to traps baited with MeSA, He, Be, and octyl aldehyde (Oa), and the bigeyed bug, Geocoris pallens, responded to MeSA, indole, and trans-2-hexen-1-al. The mymarid wasp, Anagrus daanei, was attracted to He, Oa, and farnesene. The chloropid fly, Thaumatomyia glabra, was highly attracted to methyl anthranilate. Insect families responding to HIPVs included Syrphidae (MeSA, He), Braconidae ((Z)-3-hexenyl acetate, He, cis-jasmone (J), methyl jasmonate (MeJA), methyl anthranilate (MeA)), Empididae (MeSA), Sarcophagidae (MeSA, Be, J, nonanal and geraniol), Tachinidae (Be), and Agromyzidae (MeSA). Micro-Hymenoptera (primarily parasitic wasp families) were attracted to MeSA, He, and indole. These results are discussed with respect to known properties and bioactivity of the tested HIPVs and to their potential as tools for recruiting natural enemies into agroecosystems.  相似文献   

20.
Larvae and adults of the Colorado potato beetle,Leptinotarsa decemlineata (Say), are shown to have galeal gustatory cells that are highly sensitive to distillate of potato leaf extracts, (E)-2-hexen-1-ol, (E)-2-hexenal, and other saturated and unsaturated six-carbon alcohols. In larvae and adults, the sensory response patterns elicited by leaf homogenate, leaf distillate and a mixture of these two extracts differ in subtle ways. Beetle larvae feed most readily on Millipore disks treated with leaf homogenate and the mixture, but they did not feed on disks treated with leaf distillate. The differences in behavioral response and sensory input are used to derive a potential gustatory code that may stimulate different levels of feeding. This code may be disrupted by compounds present in nonhost leaves, thus leading to reduced feeding. Possible interactions of sapid leaf volatiles, amino acids, sugars, and potentially deterrent plant compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号