首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional group gradients were prepared on low-density polyethylene (PE) sheets. The surface density of grafted functional groups was gradually changed along the sample length by way of corona discharge treatment with gradually increasing power following graft copolymerization of acrylic acid (AA), sodium p-styrene sulfonate (NaSS), or N,N-dimethyl aminopropyl acrylamide (DMAPAA). AA and NaSS are negatively chargeable and DMAPAA is positively chargeable in phosphate-buffered saline or plasma solution at pH 7.3-7.4. The prepared functional group gradient surfaces were characterized by measurement of the water contact angle, by electron spectroscopy for chemical analysis, and by Fourier transform infrared spectroscopy in the attenuated total reflectance mode. All these measurements indicated that the functional groups were grafted onto the PE surfaces with gradually increasing density. The platelets adhered to the functional group gradient surfaces along the sample length were counted and observed by scanning electron microscopy. It was observed that the platelet adhesion to the gradient surfaces decreased gradually with the increasing surface density of functional groups. This may be related to the hydrophilicity of the surfaces. The DMAPAA-grafted surface showed a large amount of platelet adhesion, probably due to its positive charge character, while the AA-grafted surface, which is charged negatively, showed poor platelet adhesion. However, the NaSS-grafted surface, which is also charged negatively, showed a relatively large amount of platelet adhesion. This may be associated with the existence of an aromatic ring close to the ionizable group in NaSS. It seems that surface functional groups and their charge character, as well as wettability, play important roles for platelet adhesion.  相似文献   

2.
Comb-like polyethylene oxide (PEO) surfaces were prepared on low-density polyethylene (PE). The comb-like PEO chain density was changed gradually along the sample lengths by corona discharge treatment with gradually increasing power and the following graft copolymerization of poly(ethylene glycol) monomethacrylate macromers (PEO-MA). The macromers with different PEO repeat unit, 1, 5, and 10, were used. The prepared comb-like PEO gradient surfaces were characterized by water contact angle, Fourier transform infrared spectroscopy in the attenuated total reflectance mode, and electron spectroscopy for chemical analysis. All these measurements indicated that the PEO chains are grafted on the PE surface with gradually increasing density of PEO. Plasma protein adsorption and platelet adhesion on the PEO gradient surfaces decreased with increasing PEO chain length and surface density. As observed by scanning electron microscopy, PEO10-MA-grafted surface with high PEO density was very effective in preventing protein adsorption and platelet adhesion and did not activate the platelets.  相似文献   

3.
We prepared polymers having a phospholipid polar group, poly [omega-methacryloyloxyalkyl phosphorylcholine (MAPC)-co-n-butyl methacrylate(BMA)], as new biomedical materials and evaluated their blood compatibility with attention to protein adsorption and platelet adhesion. The total amount of proteins adsorbed on the polymer surface from human plasma was determined, and the distribution of adsorbed proteins on the plasma-contacting surface was analyzed. The amount of proteins adsorbed on every poly (MAPC-co-BMA) was small compared with that observed on polymers without the phospholipid polar group. However, there was no significant difference in the amount of adsorbed proteins on the poly(MAPC-co-BMA) even when the methylene chain length between the phospholipid polar group and the backbone in the MAPC moiety was altered. Platelet adhesion on the polymer surface from a platelet suspension in a buffered solution was evaluated with and without plasma treatment on the surface. When a rabbit platelet suspension was brought into contact with the poly(BMA) surface after treatment with plasma, many platelets adhered and aggregated. However, a reduced amount of platelet adhered on the poly(BMA) was found in the case of direct contact with the platelet suspension. On the other hand, the poly(MAPC-co-BMA)s could inhibit platelet adhesion under both conditions. Based on these results, it can be concluded that the proteins adsorbed on the surface play an important role in determining the platelet adhesion and suppression of the protein adsorption on the surface, which is one of the most significant ways of inhibiting platelet adhesion.  相似文献   

4.
For cardiovascular biomaterials, thrombosis, thromboembolism and vascular graft occlusion are believed to be precipitated by the adsorption of proteins containing adhesive ligands for platelets. Polyethylene-glycol-diisocyanate (PEG-diisocyanate, 3400 MW) may potentially react with protein amines to form molecular barriers on adsorbed proteins on biomaterials, thereby masking adhesive ligands and preventing acute surface thrombosis. To test this notion, PE, PTFE, and glass microconduits were pre-adsorbed with fibrinogen and treated with PEG-diisocyanate, non-reactive PEG-dihydroxyl, or remained untreated. Following perfusion of 111In-labeled platelets in whole human blood for 1 min (wall shear rate = 312 s(-1)), PEG-diisocyanate treated surfaces experienced 96% (PE), 97% (PTFE) and 94% (glass) less platelet deposition than untreated surfaces. Similar reductions were seen for PEG-diisocyanate versus PEG-dihydroxyl treatment. Low shear perfusions of plasma for 1 h prior to blood contact did not reduce the inhibitory effect of PEG-diisocyanate. Platelet adhesion onto collagen-coated glass coverslips and platelet deposition onto preclotted Dacron were also reduced by treatment with PEG-diisocyanate (93 and 91%, respectively). Protein-reactive PEG may thus have utility in forming molecular barriers on surface-associated proteins to inhibit acute thrombosis on cardiovascular biomaterials.  相似文献   

5.
In this work the hypothesis that a mature, cross-linked fibrin clot, pre-formed on a biomaterial, may be relatively nonthrombogenic was investigated. A cross-linked fibrin layer was formed on polyethylene which had been precoated with thermally denatured fibrinogen. Plasma protein adsorption and platelet interactions with the cross-linked fibrin and denatured fibrinogen surfaces were investigated. The adsorption of albumin, fibrinogen, and fibronectin from plasma was measured. For all three proteins, the cross-linked fibrin surface exhibited much higher levels of adsorption than either the thermally denatured fibrinogen or the polyethylene surface. Vroman peaks were observed for fibrinogen and fibronectin on polyethylene but not on the cross-linked fibrin and thermally denatured fibrinogen materials. In dilute plasma the thermally denatured fibrinogen surface showed considerable resistance to protein adsorption. However, at plasma concentrations greater than about 5% normal, this protein resistance was apparently lost. Platelet interactions (adhesion and release of granule constituents from adherent platelets) using suspensions of washed platelets in the presence of red cells were investigated at shear rates of 50, 300, and 525 s(-1) using a cone and plate apparatus. The levels of platelet adhesion on the different surfaces were in the order: adsorbed fibrinogen > cross-linked fibrin > thermally denatured fibrinogen = polyethylene. Platelets on the cross-linked fibrin surface also showed high levels of release indicating significant platelet activation. Scanning electron microscopic observations were in agreement with the platelet adhesion and release data, showing only a few (but well-spread) adherent platelets on the cross-linked fibrin surface.  相似文献   

6.
The interactions between platelets and plasma proteins previously shown to adhere to biomaterials were evaluated, using monoclonal antibodies (mAbs) against specific platelet surface glycoprotein (GP) receptors. Purified 51Cr-labeled human platelets in plasma-free medium were incubated with each of the following antibodies: mAb 10E5 [anti-GP IIb/IIIa; fibrinogen, von Willebrand factor (vWF), and fibronectin receptor]; mAb 6D1 (anti-GP Ib-IX; vWF receptor); mAb IV.3 (anti-Fc gamma RII; IgG receptor); polyclonal antiserum A108 or mAb BIIG4 (anti-GP Ic-IIa; fibronectin receptor). Antibody-treated platelets were added to microtiter wells coated with fibronectin, fibrinogen, vWF, IgG, vitronectin, albumin, or platelet-poor plasma (PPP). 51Cr-labeled platelet adhesion to matrix proteins was expressed as a percentage of that measured on PPP-coated surface. Platelets adhered to fibrinogen, fibronectin, vWF, or IgG immobilized on polystyrene. Limited binding to either vitronectin or albumin was detected. Binding to fibrinogen and IgG was blocked by mAb 10E5. Binding to IgG was also blocked by mAb IV.3. Binding to fibronectin, reduced in the presence of mAb 10E5, mAb BIIG4, or the polyclonal antiserum A108 alone, was further reduced by combined 10E5 and BIIG4 or 10E5 and A108. Neither mAb 10E5 nor 6D1 alone blocked adhesion to vWF; however, the combination of 10E5 and 6D1 significantly reduced platelet adhesion to this matrix. Finally, platelet adhesion to the plasma-coated surface was reduced by mAbs 10E5 and BIIG4. These results indicate that multiple adhesion receptors can mediate platelet adhesion to matrix proteins immobilized on surfaces.  相似文献   

7.
Poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) was grafted onto the surface of a silicon rubber (SR) membrane (pMPC-SR) by plasma induced grafted copolymerization (PIP). Argon plasma was used to activate the SR surfaces. Determination was also made of the influences of grafted copolymerization reaction time, reaction temperature, and monomer concentration on polymerization yield. The surface properties of SR were characterized by ATR-FTIR, ESCA, and SEM. In those analyses the ATR-FTIR spectra indicated that the pMPC grafted onto the SR surface at 1720 and 3300 cm(-1). The elemental composition and different carbon bindings on the surface of the SR were examined by ESCA. An increasing P1s/C1s value g was obtained in the grafted polymerization yield with a concentration of 0.05-0.5M of MPC in the isolated ethanol solution. The surface morphologies of pMPC-SR differed more than those of control and Ar plasma treated surfaces. The difference could have been caused by the homogeneous graft polymerization of pMPC onto the SR membrane. In the biological analyses, protein adsorption on pMPC-SR surfaces was reduced. The reduced level increased with an increase in the pMPC grafted amount. The epithelial cell attachment and growth onto these samples were suppressed. The blood compatibility for a series of pMPC-SR surfaces was examined by platelet adhesion. Blood platelet morphologies in contact with the high ratio of pMPC-SR surfaces were maintained, meaning that in this case the release reaction for platelets never occurred. Consequently, the high amount of pMPC-SR surface had excellent blood compatibility, further suggesting that prevention of adhesion, activation of platelets, and adsorption of blood protein could be achieved.  相似文献   

8.
Platelet attachment and spreading were monitored on glass and various protein coated glass, under shear with washed platelets, platelet rich plasma (PRP) and whole blood, using fluorescence Optimas imaging system and software. Results showed that the platelet adhesion and spreading were sensitive to the nature of precoated proteins and the type of medium used for introducing platelet suspension for the study. In general, the cell adhesion and spreading were higher with fibrinogen (Fg), fibronectin (Fn), von Willebrand Factor (vWF), and collagen precoated surfaces. In the presence of albumin on the surface, however, platelets could not attach and spread fully when using washed cells. But, the surface attachment and spreading of the cells were higher on albumin substrates on exposure to PRP or whole blood. This may be due to the replacement of precoated albumin by other plasma proteins, like Fg to facilitate the platelet-surface attachment. The composition of this layer determines the extent of platelet activation and the adhesive strength between platelets and polymer surface. These results indicate that multiple adhesion receptors can mediate platelet adhesion and spread to matrix proteins immobilized on surfaces. Further, these studies combined with some of our earlier observations and suggestions propose the need for developing in vitro tests that resemble in vivo conditions.  相似文献   

9.
Platelet adhesion to natural and artificial surfaces and adhesion-induced aggregation were investigated in vitro using an annular perfusion chamber. The surfaces were exposed to anticoagulated blood under identical flow conditions (approximately arterial shear rates). The initial attachment of platelets (contact) appeared less surface specific than spreading and release. Fibrillar collagen was the most powerful inducer of platelet degranulation whereas elastin, microfibrils and epon were virtually inactive. Fibrillar collagen caused release also in the absence of spreading. Surface coverage with platelets did not exceed 25% unless spreading occurred. Perfusion with platelet-free plasma or platelet-poor blood did not remove adhering platelets. However, platelets were translocated from mural thrombi to the surface by such perfusion. In addition, platelets which detached from mural thrombi adhered more readily to elastin or microfibrils than platelets from the circulating blood. The initial attachment of platelets to subendothelium was inhibited in von Willebrand's disease, the Bernard-Soulier syndrome and at high concentrations of dipyridamole; spreading was inhibited in storage pool disease of rats, at low temperature (20 degrees C), with EDTA (3 MM) and Prostaglandin E1 (1 muM); and adhesion-induced aggregation was inhibited in thrombasthenia, storage pool disease and after ingestion of sulfinpyrazone or Aspirin. It is concluded that the initial attachment (contact) of platelets, spreading and surface-induced release of platelet constituents are at least partially indendent phenomena, the latter two being highly surface specific. At flow conditions which cause the disappearance of platelet adhesion appears as an irreversible process.  相似文献   

10.
Immobilized monoclonal antibodies (Mabs) have been used to attract specific molecules to a solid surface from complex mixtures such as blood, plasma or serum, thereby directing the response to the modified substrate, a key goal in rational biomaterial design. The nature of the Mab dictated the nature of the response: anti-albumin antibodies were used to prevent cell and platelet adhesion in vitro, whilst anti-fibronectin Mabs promoted attachment. Patterned surfaces could be formed, bearing Mabs that generated adhesive and non-adhesive regions. Fibrinogen adsorption from plasma showed a Vroman peak on unmodified control polymer, which was reduced by 64% in the presence of surface-bound anti-albumin Mab. Immobilization of a control Mab reduced fibrinogen adsorption only slightly, implying an albumin-mediated effect. In static tests, platelet adhesion from human platelet rich plasma was significantly reduced by the immobilization of anti-HSA Mab when compared to the untreated FEP surface (p < 0.0001). This effect was also seen with citrated blood flowing through Mab-treated polyurethane tubing at a shear rate of 132 s(-1) (p=0.034). Since platelets and proteins (as blood, plasma or serum) were introduced to the surface simultaneously, the generation of a defined protein film must have been sufficiently rapid as to shape the platelet or cell response.  相似文献   

11.
The purpose of the present study was to investigate and to compare the interactions of platelets and proteins in flowing non-anticoagulated human blood with the biomaterials polyethylene-terephthalate (Dacron) and polytetrafluoroethylene (PTFE, Teflon). The respective biomaterials were positioned in a parallel-plate perfusion chamber, and exposed to flowing blood for 5 min at wall shear rates characteristic for veins (100/s), medium sized (650/s) and moderately stenosed arteries (2,600/s). Blood-material interactions were morphologically quantified as platelet-surface adhesion, thrombus volume and fibrin deposition. Platelet adhesion to Dacron was highest at the lowest shear rate (13%) and decreased with increasing shear (4% at 2600/s). In contrast, platelet adhesion to PTFE was shear rate independent (17-19%), and significantly higher than the adhesion to Dacron at 2600/s (P < 0.05). A hallmark of the platelets adherent to PTFE and Dacron was the large percentage of platelets not spread out on the surface. This indicates that both materials were poor platelet activators, even though immunostaining demonstrated the adsorption of the platelet adhesive proteins von Willebrand factor and fibronectin. Adsorption of fibrinogen was also prevailing on both materials. Virtually no thrombi formed on Dacron, while a few small platelet thrombi were observed on PTFE. Less than 1% of the Dacron and PTFE surfaces were covered by fibrin, irrespective of the shear rate. Thus, Dacron and PTFE interact differently with flowing non-anticoagulated human blood, and Dacron is apparently the least thrombogenic material.  相似文献   

12.
Platelet adhesion to the exposed surface of the extracellular matrix in flowing blood is the first and critical reaction for in vivo thrombus formation. However, the mechanism of this in vivo platelet adhesion has yet to be studied extensively. One of the reasons for this is the lack of a practical assay method for assessing platelet adhesion under flow conditions. We have devised an assay method (the fluorescent adhesion assay) that is based on the technique originally reported by Hubbell and McIntire (Biomaterials 7:354, 1986) with some modifications to make it more amenable for assaying small samples and have developed an analysis method to quantify the extent of platelet adhesion and aggregation from fluorescence images by using a computer-assisted image analysis system. In our assay, platelet adhesion, expressed as the percentage of the area covered by adhered platelets, was found to increase biphasically as a function of time. In the first phase, platelets interacted with the coated collagen, transiently stopping on the surface; we called this reaction the temporary arrest. In the second phase, platelets adhered much more rapidly and permanently on the surface, and this adhesion was dependent on the shear rate; platelets formed aggregates in this phase. We used our assay to analyze the effects of platelet aggregation inhibitors on platelet adhesion. All three examined inhibitors, EDTA (10 mmol/L), antiglycoprotein (GP) IIb/IIIa, and GRGDS peptide (1 mmol/L), inhibited the second phase adhesion in flowing blood. Furthermore, GPVI-deficient platelets also showed defective second-phase adhesion under the same conditions. These results suggested that GPIIb/IIIa activation and GPVI contribute to the reaction inducing the second phase. The second-phase adhesion has been extensively investigated, and the consensus is that this reaction is mainly attributable to the platelet-platelet interaction. In this report, we were able to detect an earlier reaction, the temporary arrest. This temporary arrest would reflect the fast and weak interaction between platelet GPIb/IX and collagen-von Willebrand factor complexes on the collagen-coated surface.  相似文献   

13.
The role of the RGDX putative receptor-recognition sites, which are present on the alpha chains of fibrin, in promoting platelet adhesion has been examined in flowing whole blood using the rectangular perfusion chamber at wall shear rates of 340 and 1,600/s. Platelets adhered to a comparable extent to surfaces coated with native fibrin and surfaces coated with fragment X-fibrin, a product of limited fibrinolysis that lacks the RGDS sites normally present at positions 572 to 575 of the alpha chains. The strengths of these adhesive interactions were comparable based on the concentrations of the antiadhesive peptide D-RGDW required to block platelet deposition to native and fragment X-fibrin at both low and high wall shear rate. Blocking either or both RGDX sequences with peptide-specific monoclonal antibodies did not inhibit platelet deposition in perfusion experiments performed with normal blood at 340/s, indicating that neither RGD motif is required for adhesion. However, adhesion was partly inhibited by anti-RGDX antibodies when perfusions were performed with blood from an afibrinogenemic patient, suggesting the RGDX sequences may play a limited role in platelet deposition. Exposure of fibrin surfaces to plasminogen/tissue-type plasminogen activator did cause a time-dependent loss of adhesiveness, but this effect was only weakly correlated with proteolysis of the fibrin alpha chains. These observations provide evidence that neither RGDX sequence is required for platelets to adhere avidly to fibrin in flowing blood. These results further suggest that incomplete fibrinolysis yields a highly thrombogenic surface.  相似文献   

14.
Platelet aggregation is believed to follow platelet adhesion to vascular injury sites. We have developed a turbidimetric assay for platelet aggregation following platelet adhesion to immobilized ligands using an aggregometer. The addition of polystyrene beads coated with von Willebrand factor (vWF) or fibrinogen (Fg) to platelet suspensions caused prompt aggregation of beads and platelets, which was detected as an increase in light transmission. Electron microscopic analysis revealed that platelets adhered to the bead surfaces and that additional platelets adhered to already adhering platelets, leading to the formation of platelet aggregates. vWF-coated beads induced larger aggregates than Fg-coated beads. The interaction of vWF-coated beads with platelets was abolished by both GPIb and GPIIb-IIIa blockers, while that of Fg-coated beads was abolished by GPIIb-IIIa blockers. vWF-coated beads induced modest secretion of granules from platelets but no thromboxane B2 synthesis. Fg-coated beads induced neither reaction. However, pleckstrin phosphorylation and protein tyrosine phosphorylation was induced by both types of bead. Platelet aggregation following platelet adhesion to both types of bead was inhibited by ADP scavengers, a protein kinase C inhibitor and a tyrosine kinase inhibitor, but not by aspirin. These findings suggest that vWF- and Fg-coated beads can induce platelet aggregation following platelet adhesion through specific ligand-receptor interactions and intracellular signaling. Our simple assay using these beads may represent a useful test for immobilized ligand-induced platelet adhesion and aggregation.  相似文献   

15.
Grafting of polyethylene glycol chains onto cellulosic membrane can be expected to reduce the interaction between blood (plasma protein and cells) and the membrane surface. Alkylether carboxylic acid (PEG acid) grafted high flux cellulosic membranes for hemodialysis, in which the polyethylene glycol chain bears an alkyl group at one side and a carboxyl group at the other side, have been developed and evaluated. PEG acid-grafted high flux cellulosic membranes with various grafting amounts have been compared with respect to platelet adhesion, the contact phase of blood coagulation, and complement activation in vitro. A new method of quantitating platelet adhesion on hollow-fiber membrane surfaces has been developed, which is based on the determination of lactate dehydrogenase (LDH) activity after lysis of the adhered platelets. PEG acid-grafted high flux cellulosic membranes showed reduced platelet adhesion and complement activation effects in grafting amounts of 200 ppm or higher without detecting adverse effects up to grafting amounts of 850 ppm. The platelet adhesion of a PEG acid-grafted cellulosic membrane depends on both the flux and grafting amounts of the membrane. It is concluded that the grafting of PEG acid onto a cellulosic membrane improves its biocompatibility as evaluated in terms of platelet adhesion, complement activation, and thrombogenicity.  相似文献   

16.
Subendothelium of rabbit aorta and fibrillar collagen were exposed to citrated human or rabbit blood which was circulated through a perfusion chamber under flow conditions similar to those found in arteries. The resulting platelet adhesion and subsequent formation of platelet microthrombi on the exposed surfaces were measured in 0.8 mum thich sections by a morphometric technique using light microscopy. Removal of plasma ADP by the substrate-enzyme combination CP-CPK (creatine phosphate-creatine phosphokinase; 3 mM and 90 U/ml blood) did not affect the initial attachment and spreading of platelets on subendothelium, whereas platelet thrombus formation was strongly inhibited. On free collagen fibrils CP-CPK was much less inhibitory on platelet thrombus formation but platelet adhesion again was not affected. It is concluded that platelet aggregation induced by thrombogenic surfaces in the presence of arterial blood flow is at least partially governed by ADP released from adhering platelets. Platelet adhesion to the examined surfaces, however, does not seem to be mediated by plasma ADP.  相似文献   

17.
Polyethylene oxide (PEO) surfaces were prepared by the addition of PEO- and sulfonated PEO-containing amphiphilic block copolymers as surface-modifying additives in a segmented polyurethane (PU). PEO-PPO-PEO triblock copolymers (Pluronics) with different PEO chain lengths (from 2 to 80) were used as additives. The prepared film surfaces were characterized by the measurement of dynamic water contact angles and electron spectroscopy for chemical analysis. It was observed that the PU films containing 10 wt% of PEO additives were surface-saturated with the additives regardless of their PEO chain length, but the PEO chains were more projected from the film surfaces containing the additives with longer PEO chains. The water absorption of the films increased largely with the increasing PEO chain length of the additives. The addition of PEO additives produced film surfaces that were in a gel-like state. The films demonstrated some extraction of the PEO additives. However, the additives with higher molecular weights were entrapped more stably into the PU matrix. The mechanical properties (tensile strength and elongation) of the films were changed by the addition of PEO additives, but the differences were not significant compared to the control PU. The platelet adhesion on the film surfaces decreased with increasing PEO chain length of the additives. The film surface containing additives with long PEO chains (chain length of 80) was particularly effective in preventing platelet adhesion. The effect of negatively charged sulfonate groups on the prevention of platelet adhesion appeared only on the film surfaces containing additives with short PEO chains. For longer PEO chains, the chain mobility effect was more dominant than the negative charge effect on the prevention of platelet adhesion.  相似文献   

18.
P-Selectin, an adhesion molecule expressed on the surfaces of activated platelets and the vascular endothelium, mediates platelet binding to monocytes and neutrophils. Monocytes and neutrophils produce superoxide anion by activated platelets through p-selectin. Aprotinin, a serine protease inhibitor, inhibits plasmin to activate platelets during cardiopulmonary bypass (CPB). A total of 25 patients were studied to clarify the effects of aprotinin on p-selectin expression during CPB. Nine patients were not given aprotinin (control group), and 16 were given aprotinin of 2 million U in the priming solution (aprotinin group). The platelet count and soluble p-selectin in the plasma, p-selectin on the surface membranes of platelets, and leukocyte-platelet conjugate levels were measured during and after CPB. The platelet count was maintained well in the aprotinin group. The increases of soluble p-selectin in the plasma, platelet surface p-selectin, and leukocyte-platelet conjugates were less in the aprotinin group than in the control group (p < 0.05). In conclusion, aprotinin in patients undergoing CPB may reduce the early inflammatory reactions induced by p-selectin.  相似文献   

19.
To investigate the effects of the methylene chain length between the phospholipid polar group and the backbone on blood compatibility of a phospholipid polymer, copolymers of omega-methacryloyloxyalkyl phosphorylcholine (MAPC) with n-butyl methacrylate (BMA) were synthesized. The methylene chains were ethylene (n = 2), tetramethylene (n = 4), and hexamethylene (n = 6). Every MAPC copolymer with an MAPC mole fraction in the range of 0.1-0.3 was soluble in ethanol but only swelled in water, and the equilibrium water fraction of the water-swollen MAPC copolymer membrane decreased with the length of the methylene chain. When a rabbit platelet-rich plasma was applied on the MAPC copolymer surface with an 0.1 MAPC mol fraction for 180 min, the number of adhered platelets depended on the length of the methylene chain in the MAPC moiety of the copolymer. The amount of phospholipid adsorbed on the MAPC copolymer from human plasma was larger than that on hydrophobic poly(BMA) and increased with the length of the methylene chain in the MAPC moiety. That is, the reduction of platelet adhesion corresponded to the increase in the amount of phospholipid adsorbed on the MAPC copolymer.  相似文献   

20.
Diazotized (125I)-diiodosulfanilic acid (DD125ISA) binds specifically to the exposed proteins on the surface of the rabbit platelet plasma membrane. This was demonstrated by the following observations with the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of whole platelets and the isolated plasma membrane fraction: (1) the specific activity of isolated membrane protein was sevenfold that of whole platelet protein, (2) no proteins of intact platelets were labeled which were not represented in the isolated plasma membrane, (3) DD125ISA-labeled proteins were altered by trypsin treatment of intact, labeled platelets, and (4) the pattern of labeling produced by reaction of isolated membranes with DD125ISA differed from that produced by the labeling of intact platelets. Reaction of DD125ISA with intact platelets produced labeling of only the three membrane glycoproteins (molecular weights: 180,000, 125,000, and 92,000 daltons) with greatest labeling of the largest glycoprotein and least labeling of the smallest glycoprotein. When rabbit platelets were labeled simultaneously with DD125ISA and 51Cr, the two isotopes were similarly distributed in various density populations of platelets. Some DD125ISA was solubilized from labeled and washed platelets by sonication, but all platelet DD125ISA was recovered in the plasma membrane fraction after 30 minutes' circulation in vivo. In vivo 51Cr recovery and survival were not altered by simultaneous labeling of platelets with DD125ISA. The disappearance of DD125ISA from circulating platelets (T 1/2 = 17 hours) was more rapid than 51Cr (T 1/2 = 30 hours) and appeared exponential in contrast to the linear 51Cr disappearance. On the other hand, DD125ISA did not disappear from platelets faster than 51Cr when doubly labeled platelets were harvested after 3 hours' circulation and incubated in autologous plasma (T 1/2 of DD125ISA elution = 43 hours, 51Cr = 33 hours). SDS-PAGE analysis of DD125ISA-labeled platelets after 14 to 20 hours' circulation in vivo demonstrated the same pattern of DD125ISA distribution on membrane glycoproteins as on the platelets prior to infusion. We interpret this symmetrical loss of the membrane label to indicate symmetrical loss of membrane proteins, suggesting that the platelet may lose pieces of membrane and not specific surface proteins during circulation. This could occur during reversible adhesion encounters during the process of hemostasis and cause the smaller size and decreased effectiveness of older platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号