首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Annotating maps, graphs, and diagrams with pieces of text is an important step in information visualization that is usually referred to as label placement. We define nine label-placement models for labeling points with axis-parallel rectangles given a weight for each point. There are two groups: fixed-position models and slider models. We aim to maximize the weight sum of those points that receive a label. We first compare our models by giving bounds for the ratios between the weights of maximum-weight labelings in different models. Then we present algorithms for labeling n points with unit-height rectangles. We show how an O(n\log n)-time factor-2 approximation algorithm and a PTAS for fixed-position models can be extended to handle the weighted case. Our main contribution is the first algorithm for weighted sliding labels. Its approximation factor is (2+\varepsilon), it runs in O(n 2/\varepsilon) time and uses O(n/\varepsilon) space. We show that other than for fixed-position models even the projection to one dimension remains NP-hard. For slider models we also investigate some special cases, namely (a) the number of different point weights is bounded, (b) all labels are unit squares, and (c) the ratio between maximum and minimum label height is bounded.  相似文献   

2.
We show that the NP-hard optimization problems minimum and maximum weight exact satisfiability (XSAT) for a CNF formula C over n propositional variables equipped with arbitrary real-valued weights can be solved in O(||C||20.2441n ) time. To the best of our knowledge, the algorithms presented here are the first handling weighted XSAT optimization versions in non-trivial worst case time. We also investigate the corresponding weighted counting problems, namely we show that the number of all minimum, resp. maximum, weight exact satisfiability solutions of an arbitrarily weighted formula can be determined in O(n 2·||C||?+?20.40567n ) time. In recent years only the unweighted counterparts of these problems have been studied (Dahllöf and Jonsson, An algorithm for counting maximum weighted independent sets and its applications. In: Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 292–298, 2002; Dahllöf et al., Theor Comp Sci 320: 373–394, 2004; Porschen, On some weighted satisfiability and graph problems. In: Proceedings of the 31st Conference on Current Trends in Theory and Practice of Informatics (SOFSEM 2005). Lecture Notes in Comp. Science, vol. 3381, pp. 278–287. Springer, 2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号