首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphorylation stoichiometry was assessed by two analytical strategies. Both are based on element mass spectrometry (ICPMS, inductively coupled plasma mass spectrometry) and simultaneous monitoring of (31)P and (34)S. One strategy employs a combination of 1D gel electrophoresis, in-gel digestion, and final microLC-ICPMS analysis (microLC = capillary liquid chromatography). The other strategy uses the combination of 1D gel electrophoresis, protein blotting, and imLA-ICPMS (imLA = imaging laser ablation). The two methods were evaluated with standard phosphoproteins and were applied to the analysis of the cytoplasmatic proteome of bacterial cells (Corynebacterium glutamicum) and eukaryotic cells (Mus musculus). The eukaryotic proteome was found to exhibit a significantly higher phosphorylation degree (approximately 0.8 mol of P/mol of protein) compared to the bacterial proteome (approximately 0.01 mol of P/mol of protein). Both analytical strategies revealed consistent quantitative results, with the microLC-ICPMS approach providing the higher sensitivity. In summary, two ICPMS-based methods for quantitative estimation of the phosphorylation degree of a cellular proteome are presented which access the native proteome state and do not require any type of label introduction or derivatization.  相似文献   

2.
We present a liquid chromatography/mass spectrometry (LC/MS) method for long-chain and very-long-chain fatty acid analysis and its application to (13)C-tracer studies of fatty acid metabolism. Fatty acids containing 14 to 36 carbon atoms are separated by C(8) reversed-phase chromatography using a water-methanol gradient with tributylamine as ion pairing agent, ionized by electrospray and analyzed by a stand-alone orbitrap mass spectrometer. The median limit of detection is 5 ng/mL with a linear dynamic range of 100-fold. Ratios of unlabeled to (13)C-labeled species are quantitated precisely and accurately (average relative standard deviation 3.2% and deviation from expectation 2.3%). In samples consisting of fatty acids saponified from cultured mammalian cells, 45 species are quantified, with average intraday relative standard deviations for independent biological replicates of 11%. The method enables quantitation of molecular ion peaks for all labeled forms of each fatty acid. Different degrees of (13)C-labeling from glucose and glutamine correspond to fatty acid uptake from media, de novo synthesis, and elongation. To exemplify the utility of the method, we examined isogenic cell lines with and without activated Ras oncogene expression. Ras increases the abundance and alters the labeling patterns of saturated and monounsaturated very-long-chain fatty acids, with the observed pattern consistent with Ras leading to enhanced activity of ELOVL4 or an enzyme with similar catalytic activity. This LC/MS method and associated isotope tracer techniques should be broadly applicable to investigating fatty acid metabolism.  相似文献   

3.
A method for the determination of underivatized amino acids based on capillary electrophoresis coupled to electrospray ionization mass spectrometry (CE-ESI-MS) is described. To analyze free amino acids simultaneously a low acidic pH condition was used to confer positive charge on whole amino acids. The choice of the electrolyte and its concentration influenced resolution and peak shape of the amino acids, and 1 M formic acid was selected as the optimal electrolyte. Meanwhile, the sheath liquid composition had a significant effect on sensitivity and the highest sensitivity was obtained when 5 mM ammonium acetate in 50% (v/v) methanol-water was used. Protonated amino acids were roughly separated by CE and selectively detected by a quadrupole mass spectrometer with a sheath flow electrospray ionization interface. Under the optimized conditions, 19 free amino acids normally found in proteins and several physiological amino acids were well determined in less than 17 min. The detection limits for basic amino acids were between 0.3 and 1.1 mumol/L and for acidic and low molecular weight amino acids were less than 6.0 mumol/L with pressure injection of 50 mbar for 3 s (3 nL) at a signal-to-noise ratio of 3. This method is simple, rapid, and selective compared with conventional techniques and could be readily applied to the analysis of free amino acids in soy sauce.  相似文献   

4.
Peptide mass mapping using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry in conjunction with interrogation of sequence databases is a powerful tool for the identification of proteins. Glycosylated proteins often yield poor MALDI peptide maps due to shielding of proteolytic cleavage sites and the presence of modified peptides. Here we demonstrate that enzymatic removal of N-linked glycans with simultaneous partial (50%) 18O-labeling of glycosylated asparagine residues prior to proteolysis and MALDI peptide mass mapping can overcome these problems. As a result, more peptides are observed in MALDI spectra which, in turn, increases the specificity of subsequent database searches. Furthermore, the detection of a labeled peptide directly translates into partial sequence information as N-linked carbohydrates are exclusively attached to asparagine residues that form part of the NXS/T sequence. The mass of the formerly glycosylated peptide together with the NXS/T sequence pattern represents a discriminating criterion for database searching which, on average, increases the search specificity by a factor of 100. This procedure allows the unambiguous identification of glycoproteins that would otherwise require sequencing and, at the same time, enables the identification of N-glycosylation sites with higher sensitivity than previously possible.  相似文献   

5.
We have developed a new method that applies acidic catalysis with hydrochloric acid for (18)O-labeling of peptides at their carboxyl groups. With this method, peptides get labeled at their C-terminus, at Asp and Glu residues, and at carboxymethylated cysteine residues. Oxygen atoms at phosphate groups of phosphopeptide are not exchanged. Our elaborated labeling protocol is easy to perform, fast (5 h and 30 min), and results in 95-97 atom % incorporation of (18)O at carboxyl groups. Undesired side reactions, such as deamidation or peptide hydrolysis, occur only at a very low level under the conditions applied. In addition, data analysis can be performed automatically using common software tools, such as Mascot Distiller. We have demonstrated the capability of this method for the quantitation of peptides as well as for phosphopeptides.  相似文献   

6.
7.
The molecular ion of the nanoparticle Au 25(SCH 2CH 2Ph) 18 (A 25(SR) 18) is observed at 7394 Da in fast atom bombardment (FAB, Xe atoms) ionization mass spectrometry using a 3-nitrobenzyl alcohol matrix. A distinctive pattern of positive fragment ions is evident in the mass interval 5225-7394 Da, where peaks are seen for successive mass losses equivalent to R 2S entities. Because the Au 25(SCH 2CH 2Ph) 18 nanoparticle structure is crystallographically known to consist of a centered Au 13 icosahedral core surrounded by six Au 2(SR) 3 semirings, the R 2S loses are proposed to represent serial rearrangements and decompositions of the semiring structures. Mass losses equivalent to R 2S 2 and R 2 entities also appear at the lower end of this mass interval. The most intense spectral peak, at m/ z = 5246 Da, is assigned to the fragment Au 25S 10, from which all of the CH 2CH 2Ph organic units have been cleaved but from which no gold atoms have been lost. A different pattern of fragmentation is observed at lower masses, producing ions corresponding to serial losses of one gold atom and varied numbers of sulfur atoms, which continues down to a Au 9S 2 fragment. FAB mass spectra of the Au nanoparticle are much easier to interpret than laser desorption/ionization spectra, but they show more extensive fragmentation than do electrospray and low laser pulse intensity MALDI spectra. The loss of R 2S fragmentation in FAB is distinctive and unlike that seen in the other ionization modes. The FAB spectrum for the nanoparticle Au 25(S(CH 2) 9CH 3) 18 is also reported; its fragmentation parallels that for Au 25(SCH 2CH 2Ph) 18, implying that this nanoparticle has the same surprising stellated (staples) structure.  相似文献   

8.
Differential ion mobility spectrometry (FAIMS) integrated with mass spectrometry (MS) is a powerful new tool for biological and environmental analyses. Large proteins occupy regions of FAIMS spectra distinct from peptides, lipids, or other medium-size biomolecules, likely because strong electric fields align huge dipoles common to macroions. Here we confirm this phenomenon in separations of proteins at extreme fields using FAIMS chips coupled to MS and demonstrate their use to detect even minor amounts of large proteins in complex matrixes of smaller proteins and peptides.  相似文献   

9.
Recent mechanistic studies have indicated that at subwavelength post diameters and selected aspect ratios nanopost arrays (NAPA) exhibit ion yield resonances ( Walker , B. N. , Stolee , J. A. , Pickel , D. L. , Retterer , S. T. , and Vertes , A. J. Phys. Chem. C 2010 , 114 , 4835 - 4840 ). In this contribution we explore the analytical utility of these optimized structures as matrix-free platforms for laser desorption ionization mass spectrometry (LDI-MS). Using NAPA, we show that high ionization efficiencies enable the detection of ultratrace amounts of analytes (e.g., ~800 zmol of verapamil) with a dynamic range spanning up to 4 orders of magnitude. Due to the clean nanofabrication process and the lack of matrix material, minimal background interferences are present in the low-mass range. We demonstrate that LDI from NAPA ionizes a broad class of small molecules including pharmaceuticals, natural products, metabolites, and explosives. Quantitation of resveratrol in red wine samples shows that the analysis of targeted analytes in complex mixtures is feasible with minimal sample preparation using NAPA-based LDI. We also describe how multiple metabolite species can be directly detected in single yeast cells deposited on the NAPA chip. Twenty-four metabolites, or 4% of the yeast metabolome, were identified in the single-cell spectra.  相似文献   

10.
Carbohydrates represent a major class of biopolymers, which occur in nature either as oligosaccharides or glycoconjugates, in which the sugar moiety is linked to proteins or lipids. The significance of mass spectrometry for highly sensitive analysis of complex carbohydrates increased after the introduction of the electrospray ionization and matrix assisted laser desorption/ionization methods and the possibility of tandem MS for sequencing of single molecular species in complex mixtures. Rapid and sensitive characterization of carbohydrates in biological systems by automated nanoscale liquid delivery and chip-based electrospray interface techniques have not been developed so far. In this contribution, the implementation and optimization of a fully automated chip-based nanoelectrospray assembly (NanoMate system), operating in the negative ion mode, in combination with QTOF-tandem MS for mapping/sequencing and computer-assisted structure assignment for carbohydrate components in complex mixtures is presented.  相似文献   

11.
Reaction products in electrochemical processes can be identified by coupling an electrochemical thin-layer flow cell to a thermospray mass spectrometer. The performance of this analytical method, electrochemical thermospray mass spectrometry, is demonstrated. This includes the characterization of the improved electrochemical thin-layer flow cell. This cell offers the possibility to combine cyclic voltammograms with mass spectrometry. This goal was achieved, too, by the construction of a new thermospray ion source and a special vacuum recipient.  相似文献   

12.
13.
Nanostructure-Initiator Mass Spectrometry (NIMS) is a matrix-free desorption/ionization approach that is particularly well-suited for unbiased (untargeted) metabolomics. An overview of the NIMS technology and its application in the detection of biofluid and tissue metabolites are presented. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).  相似文献   

14.
15.
Most proteins are glycosylated. Mass spectrometry methods are used for mapping glycoprotein glycosylation and detailed glycan structural determination. This technology enables precise characterization of recombinant glycoproteins in the pharmaceutical industry and academic biomedicine.  相似文献   

16.
Wang YK  Ma Z  Quinn DF  Fu EW 《Analytical chemistry》2001,73(15):3742-3750
Systematic analysis of proteins is essential in understanding human diseases and their clinical treatments. To achieve the rapid and unambiguous identification of marker or target proteins, a new procedure termed "inverse labeling" is proposed. With this procedure, to evaluate protein expression of a diseased or a drug-treated sample in comparison with a control sample, two converse labeling experiments are performed in parallel. The perturbed sample (by disease or by drug treatment) is labeled in one experiment, whereas the control is labeled in the second experiment. When mixed and analyzed with its unlabeled counterpart for differential comparison using mass spectrometry, a characteristic inverse labeling pattern of mass shift will be observed between the two parallel analyses for proteins that are differentially expressed. In this study, protein labeling is achieved through 18O incorporation into peptides by proteolysis performed in [18O]water. Once the peptides are identified with the characteristic inverse labeling pattern of 18O/16O ion intensity shift, MS data of peptide fingerprints or peptide sequence information can be used to search a protein database for protein identification. The methodology has been applied successfully to two model systems in this study. It permits quick focus on the signals of differentially expressed proteins. It eliminates the detection ambiguities caused by the dynamic range of detection on proteins of extreme changes in expression. It enables the detection of protein modifications responding to perturbation. This strategy can also be extended to other protein-labeling methods, such as chemical or metabolic labeling, to realize the same benefits.  相似文献   

17.
18.
The purpose of this work is to analyze glycosaminoglycans (GAGs) directly from complex mixtures without the need to purify individual components. Novel conditions for negative ion electrospray MS of chondroitin sulfate (CS) oligosaccharides are described in which sodium adduction and fragmentation are avoided. Differentiation between positional sulfation isomers is demonstrated for CS disaccharides, and a selected reaction monitoring scheme is used to quantify sulfation isomers in disaccharides liberated from decorin and biglycan. A size exclusion chromatography LC/MS method is shown to be effective for compositional analysis of longer CS oligosaccharides. The SEC step serves to simplify the composition of GAGs entering the mass spectrometer at any time, thus allowing the masses of the constituent molecules to be extracted. Mass spectrometric detection produces far more information than conventional UV or fluorescent detectors and allows the monosaccharide composition of individual components to be determined.  相似文献   

19.
A new method is presented to screen proteolytic mass maps of cross-linked protein complexes for the presence of cross-linked peptides and for the verification of proposed structures. On the basis of the incorporation of 18O from isotopically enriched water into the C-termini of proteolytic peptides, cross-linked peptides are readily distinguished in mass spectra by a characteristic 8 amu shift. This is due to the incorporation of two 18O atoms in each C-terminus, so that normal and surface-labeled peptides shift 4 amu and cross-linked peptides containing two C-termini will shift 8 amu compared with their unlabeled counterparts. The method is fast, sensitive, and reliable and can be combined with any available cross-linking reagent and a wide range of proteolytic agents. As proof of principle, we successfully applied the method to a complex of two DNA repair proteins (Rad18-Rad6) and identified the interaction domain.  相似文献   

20.
Amphipols (APols) are amphipathic polymers with the ability to substitute detergents to keep membrane proteins (MPs) soluble and functional in aqueous solutions. APols also protect MPs against denaturation. Here, we have examined the ability of APol-trapped MPs to be analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For that purpose, we have used ionic and nonionic APols and as model proteins (i) the transmembrane domain of Escherichia coli outer membrane protein A, a β-barrel, eubacterial MP, (ii) Halobacterium salinarum bacteriorhodopsin, an α-helical archaebacterial MP with a single cofactor, and (iii, iv) two eukaryotic MP complexes comprising multiple subunits and many cofactors, cytochrome b(6)f from the chloroplast of the green alga Chlamydomonas reinhardtii and cytochrome bc(1) from beef heart mitochondria. We show that these MP/APol complexes can be readily analyzed by MALDI-TOF-MS; most of the subunits and some lipids and cofactors were identified. APols alone, even ionic ones, had no deleterious effects on MS signals and were not detected in mass spectra. Thus, the combination of MP stabilization by APols and MS analyses provides an interesting new approach to investigating supramolecular interactions in biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号