首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of operating parameters on the arsenic removal by nanofiltration   总被引:3,自引:0,他引:3  
Arsenic contamination of surface and groundwater is a worldwide problem in a large number of Countries (Bangladesh, Argentina, Italy, USA, New Zealand, etc.). In many contaminated areas a continuous investigation of the available arsenic removal technologies is essential to develop economical and effective methods for removing arsenic in order to meet the new Maximum Contaminant Level (MCL) standard (10 μg/l) recommended by the World Health Organization (WHO).In this work the removal of pentavalent arsenic from synthetic water was studied on laboratory scale by using two commercial nanofiltration (NF) spiral-wound membrane modules (N30F by Microdyn-Nadir and NF90 by Dow Chemical). The influence of main operating parameters such as feed concentration, pH, pressure and temperature on the As rejection and permeate flux of both membranes, was investigated. An increase of pH and a decrease of operating temperature and As feed concentration led to higher As removal for both membranes, whereas higher transmembrane pressure (TMP) values slightly reduced the removal achievable with the N30F membrane. In both cases, the permeate flux increased with temperature and pressure and reached its maximum value at a pH of around 8.Among the parameters affecting the As rejection, feed concentration plays a key role for the production of a permeate stream respecting the limits imposed by WHO.  相似文献   

2.
Teixeira MR  Rosa MJ 《Water research》2006,40(15):2837-2846
This study investigates the influence of chemical feed characteristics on nanofiltration performance for cyanotoxins removal, namely the neurotoxic anatoxin-a (alkaloid of 166 g/mol, positively charged) and the hepatotoxic microcystins (cyclic peptides of approximately 1,000 g/mol, negatively charged). Results indicate that NF membranes are an effective barrier against anatoxin-a and microcystins in drinking water. Anatoxin-a and especially microcystins were almost completely removed, regardless of the variations in feed water quality (natural organic matter and competitive toxin), the water recovery rate and the pH values. Anatoxin-a removal was governed by electrostatic interactions and steric hindrance, whereas for microcystins the latter was the main mechanism. In turn, fluxes were significantly impacted by background organics and, especially, inorganics (pH, calcium).  相似文献   

3.
Selective removal of dissolved uranium in drinking water by nanofiltration   总被引:3,自引:0,他引:3  
A procedure for the selective removal of uranium traces dissolved in drinking water has been studied. Plate module membrane filtration equipment was operated to evaluate the performance and selectivity of three different nanofiltration flat-sheet membranes. Experiments were carried out using various commercial mineral waters with distinct physicochemical compositions. The membranes were first discriminating by their ability to reject uranium in the presence of the main cations found in mineral waters, using a 2 mg L(-1) (2000 ppb) concentration of uranium. The rejection of U(VI) was dependent on the uranyl speciation and the ionic strength. Second, removal of uranium traces (0.02 mg L(-1), 20 ppb) was performed using the nanofiltration membrane showing the highest selectivity for uranium toward alkaline and alkaline-earth ions. The results showed a high performance of the nanofiltration membrane, Osmonics DL, for selective uranium rejection at low pressure (1 bar), illustrating the advantage of nanofiltration for the selective removal of uranium from drinking water.  相似文献   

4.
Organic arsenic removal from drinking water   总被引:2,自引:0,他引:2  
Arsenic occurs in both inorganic and organic forms in water. Although various methods have been adopted to remove inorganic species of arsenic from drinking water, not much emphasis has been given to the removal of organic species of arsenic. In the present study column studies were conducted using manganese greensand (MGS), iron oxide-coated sand (IOCS-1 and IOCS-2) and ion exchange resin in Fe3+ form, to examine the removal of organic arsenic (dimethylarsinate) spiked to required concentrations in tap water. Batch studies were conducted with IOCS-2, and the results showed that the organic arsenic adsorption capacity was 8 μg/g IOCS-2. Higher bed volumes (585 BV) and high arsenic removal capacity (5.7 μg/cm3) were achieved by the ion exchange resin among all the media studied. Poor performance was observed with MGS and IOCS-1.  相似文献   

5.
The rejection of cyclophosphamide (CP) by nanofiltration (NF) and reverse osmosis (RO) membranes from ultrapure (Milli-Q) water and membrane bioreactor (MBR) effluent was investigated. Lyophilization-extraction and detection methods were first developed for CP analysis in different water matrices. Experimental results showed that the RO membrane provided excellent rejection (>90%) under all operating conditions. Conversely, efficiency of CP rejection by NF membrane was poor: in the range of 20-40% from Milli-Q water and around 60% from MBR effluent. Trans-membrane pressure, initial CP concentration and ionic strength of the feed solution had almost no effect on CP retention by NF. On the other hand, the water matrix proved to have a great influence: CP rejection rate by NF was clearly enhanced when MBR effluent was used as the background solution. Membrane fouling and interactions between the CP and water matrix appeared to contribute to the higher rejection of CP.  相似文献   

6.
Bacteria are widespread, abundant, geochemically reactive components of aquatic environments. In particular, iron-oxidizing bacteria, are involved in the oxidation and subsequent precipitation of ferrous ions. Due to this property, they have been applied in drinking water treatment processes, in order to accelerate the removal of ferrous iron from groundwaters. Iron also exerts a strong influence on arsenic concentrations in groundwater sources, while iron oxides are efficient adsorbents in arsenic removal processes. In the present study, the removal of arsenic (III and V), during biological iron oxidation has been investigated. The results showed that both inorganic forms of arsenic could be efficiently treated, for the concentration range of interest in drinking water (50-200microg/L). In addition, the oxidation of trivalent arsenic was found to be catalyzed by bacteria, leading to enhanced overall arsenic removal, because arsenic in the form of arsenites cannot be efficiently sorbed onto iron oxides. This method comprises a cost competitive technology, which can find application in treatment of groundwaters with elevated concentrations of iron and arsenic.  相似文献   

7.
Nanoscale iron oxide particles were synthesized and deposited on porous alumina tubes to develop tubular ceramic adsorbers for the removal of arsenic, which is an extremely toxic contaminant even in very low concentrations. Its natural presence affects rural and low-income populations in developing countries in Latin America and around the world, which makes it essential to develop a user-friendly, low energy demanding and low cost treatment technology. The fabricated ceramic membranes can be operated with minimal trans-membrane pressure difference and do not require pumping. The support tubes and final membrane have been characterized by surface area and porosity measurements, permeability tests and scanning electron microscopy (SEM) imaging. Arsenic concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Due to its low cost and simple operation, the system can be applied as a point of use device for the treatment of arsenic contaminated groundwaters in developing countries.  相似文献   

8.
Teixeira MR  Rosa MJ 《Water research》2006,40(19):3612-3620
The removal of Microcystis aeruginosa and associated microcystins was investigated by a dissolved gas flotation (preceded by coagulation/flocculation)-nanofiltration (NF) sequence. The experiments were conducted with a freshwater spiked with M. aeruginosa cell aggregates to simulate a naturally occurring bloom. Two types of gases were used in the flotation pre-treatment, air (DAF) and a mixture of CO(2)/air. Very good results in terms of NF fluxes, overall removal efficiencies and final water quality were achieved with both sequences. However, the CO(2)/air mixture presented no benefit to the overall sequence, both in terms of toxin release to water during flotation and lower natural organic matter removal by NF, which was due to an overall negative effect of the acid pH. NF was able to completely remove cyanobacteria (100% removal efficiency of chlorophyll a) and microcystins (always under the quantification limit), regardless of the pre-treatment used and the water recovery rate (up to 84%). Therefore, DAF-NF sequence is a safe barrier against M. aeruginosa and microcystins in drinking water. In addition, it ensures an excellent control of particles, disinfection by-products formation, and other micropollutants that may be present in raw water.  相似文献   

9.
Biological removal of arsenic pollution by soil fungi   总被引:2,自引:0,他引:2  
Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg− 1) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l− 1 of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain) > 0.311 (Rhizopus sp.) > 0.306 (Neocosmospora sp.) > 0.212 (Penicillium sp.) > 0.189 (Aspergillus sp.) at 10,000 mg l− 1 of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l− 1 arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l− 1 of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils.  相似文献   

10.
Sorption materials for arsenic removal from water: a comparative study   总被引:4,自引:0,他引:4  
Daus B  Wennrich R  Weiss H 《Water research》2004,38(12):2948-2954
Five different sorption materials were tested in parallel for the removal of arsenic from water: activated carbon (AC), zirconium-loaded activated carbon (Zr-AC), a sorption medium with the trade name 'Absorptionsmittel 3' (AM3), zero-valent iron (Fe(0)), and iron hydroxide granulates (GIH). Batch and column tests were carried out and the behavior of the two inorganic species (arsenite and arsenate) was investigated separately. The sorption kinetics of arsenate onto the materials followed the sequence Zr-AC > GIH = AM3 > Fe(0) > AC. A different sequence was obtained for arsenite (AC > Zr-AC = AM3 = GIH = Fe(0)). AC was found to enhance the oxidation reaction of arsenite in anaerobic batch experiments. The linear constants of the sorption isotherms were determined to be 377, 89 and 87 for Zr-AC, AM3 and GIH, respectively. The uptake capacities yielded from the batch experiment were about 7gl(-1) for Zr-Ac and 5gl(-1) for AM3. Column tests indicated that arsenite was completely removed. The best results were obtained with GIH, with the arsenate not eluting before 13100 pore volumes (inflow concentration 1 mg l(-1) As) which corresponds to a uptake capacity of 2.3 mg g(-1) or 3.7 g l(-1).  相似文献   

11.
The use of a synthetically prepared clay material, hydrotalcite (HT), for the removal of arsenite (As(III)) and arsenate (As(V)) from drinking water is described. Percolation through HT of water containing 500-1000 microg/L As (levels often found in As-contaminated well water) produced leachate with As levels well below 10 microg/L. The technology could be coupled to that used in less-developed regions for removing organisms from drinking water, viz. leaching through porous pots and filter candles. The 'spent' HT is easily converted into valuable phosphatic fertilizer that would have an insignificant effect on soil arsenic levels, thereby reducing the overall cost of manufacture and distribution.  相似文献   

12.
黄延平  靖大为 《供水技术》2015,9(1):7-10,15
通过小型系统对多类有机物进行的脱除率试验,分析了纳滤及反渗透系统对有机物脱除率受膜脱盐率、产水通量、给水温度、给水p H值、给水有机物浓度等运行条件的影响。表明了纳滤系统对解离型有机物和难解离型有机物的脱除率受给水温度的影响明显,受有机物浓度、产水通量等影响较小;对解离型有机物的脱除率受给水p H值影响较大。验证了反渗透系统对小分子量有机物的脱除率较低,而对大分子有机物的脱除率很高。  相似文献   

13.
Modeling a novel ion exchange process for arsenic and nitrate removal   总被引:2,自引:0,他引:2  
Kim J  Benjamin MM 《Water research》2004,38(8):2053-2062
Arsenate and nitrate can be removed quantitatively from drinking water by anion exchange. However, if the raw water contains substantial concentrations of sulfate or nitrate, the resin becomes exhausted quickly, and the requirements for regenerant (brine) can make the process unattractive. Previously, we described a modified ion exchange operating procedure for arsenic removal from solutions containing sulfate that could overcome this problem. This paper extends that work to solutions containing nitrate, and presents a mathematical model for the process. The selectivity coefficient for sulfate over nitrate of a strong base anion exchange resin increased dramatically with increasing ionic strength, partially counteracting the decrease in SO(4)/NO(3) separation factor predicted from mass action considerations. The value of this selectivity coefficient in different solutions can be used in conjunction with mass balances and solid/liquid equilibrium considerations to explore the brine requirement when the modified treatment process is applied to influent waters with various compositions. The modeling results indicate that, for relatively low influent nitrate concentrations, the volume of water treated per unit volume of brine used can be increased greatly by using the modified ion exchange process. At higher influent nitrate concentrations, the modified process remains advantageous, but is less so. The use of separate brine solutions to regenerate the upstream and downstream columns magnifies the benefits of the modified process significantly. If the sulfate in the brine is precipitated as CaSO(4)(s) rather than BaSO(4)(s), the brine usage rate increases by only 30-40%, even though the former solid is orders of magnitude more soluble than the latter.  相似文献   

14.
Zeng L 《Water research》2003,37(18):4351-4358
A method for preparing iron(III)-based binary oxide adsorbents in a granulated form for arsenic removal was studied. The key step in the method was the simultaneous generation of hydrous ferric oxide (FeOOH) sol and silica sol in situ in one reactor. This eventually led to the formation of Fe-Si complexes. The addition of silica enhanced the granulated adsorbent strength but reduced the arsenic adsorption capacity. An optimum Si/Fe molar ratio in the balance of adsorbent strength and arsenic adsorption capacity was found to be approximately 0.33. The effects of aging time, drying temperature and process pH on adsorbents were also evaluated in the study. X-ray diffraction analysis confirmed that the iron(III) oxide in the Fe-Si binary oxide adsorbents was amorphous, largely due to the retardation of the iron oxide crystallization by the presence of silicate species. The surface area of the Fe-Si adsorbents and the particle size of Fe-Si complexed suspensions were determined as well. The batch strength testing procedure introduced in this study can provide a simple and quick evaluation of granulate strength in a wet status. Generally, this developed method can prepare granulated Fe-Si binary oxide adsorbents for column adsorption of arsenic from water.  相似文献   

15.
针对铁砷复合污染型地下水,以原水铁砷比作为控制参数,通过烧杯试验研究了曝气接触氧化除铁工艺的除砷效果。结果表明,当初始砷含量分别为100,200,300和400μg/L时,原水铁砷比分别为35∶1,50∶1,52∶1和55∶1,能达到除铁效果且同时满足出水砷含量小于10μg/L的限值要求;根据氢氧化铁对砷的吸附机理,利用Freundlich吸附等温式建立了铁砷比与残余砷含量的数学模型,试验数据拟合结果与模型相吻合。此外,采用曝气氧化工艺处理铁砷复合污染地下水时,可以通过投加二价铁盐控制原水铁砷比,以实现同时去除铁砷的目的。  相似文献   

16.
The remediation of chromated copper arsenate or CCA-treated wood is a challenging problem in many countries. In a wet remediation, the recycling of the washing solutions is the key step for a successful process. Within this goal, owing to its solubility and its toxicity, the removal of arsenic from washing solution is the most difficult process. The efficiency of arsenic removal from As(III) solutions by electrolysis was investigated in view of the recycling of acidic washing solutions usable in the remediation of CCA-treated wood. Electrochemical reduction of As(III) is irreversible and thus difficult to perform at carbon electrodes. However the electrolytic extraction of arsenic can be performed by the concomitant reduction of the cupric cation and arsenite anion. The cathodic deposits obtained by controlled potential electrolysis were analyzed by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis. XRD diffraction data indicated that these deposits were mixtures of copper and copper arsenides Cu(3)As and Cu(5)As(2). Electrolysis was carried out in an undivided cell with graphite cathode and copper anode, under a controlled nitrogen atmosphere. The evolution of arsine gas AsH(3) was not observed under these conditions.  相似文献   

17.
Mixed metal oxide impregnated chitosan beads (MICB) containing nanocrystalline Al2O3 and nanocrystalline TiO2 were successfully developed. This adsorbent exploits the high capacity of Al2O3 for arsenate and the photocatalytic activity of TiO2 to oxidize arsenite to arsenate, resulting in a removal capacity higher than that of either metal oxide alone. The composition of the beads was optimized for maximum arsenite removal in the presence of UV light. The mechanism of removal was investigated and a mode of action was proposed wherein TiO2 oxidizes arsenite to arsenate which is then removed from solution by Al2O3. Pseudo-second order kinetics were used to validate the proposed mechanism. MICB is a more efficient and effective adsorbent for arsenic than TiO2-impregnated chitosan beads (TICB), previously reported on, yet maintains a desirable life cycle, free of complex synthesis processes, toxic materials, and energy inputs.  相似文献   

18.
Integrated fixed film activated sludge (IFAS) is a promising process for the enhancement of nitrification and denitrification in conventional activated sludge systems that need to be upgraded for biological nutrient removal (BNR), particularly when they have space limitations or need modifications that will require large monetary expenses. Several studies have reported successful implementations of IFAS at temperate zone wastewater treatment facilities, typically by placement of fixed film media into aerobic zones. However, nearly all of the implementations have not included enhanced biological phosphorus removal (EBPR) in the upgraded systems. This is possibly because the treatment plants have been operated at low mixed liquor mean cell residence times (MCRTs), and EBPR would wash out of the systems at the low temperatures encountered, making it difficult to maintain EBPR. The primary objective of this study was to investigate the incorporation of EBPR into IFAS systems, and study the interactions between the fixed biomass and the mixed liquor suspended solids with respect to substrate competition and nutrient removal efficiencies. Three pilot-scale UCT/VIP configuration systems were used, one as a control and the other two with Bioweb media integrated into some of the anoxic and aerobic reactors. The systems were operated at different MCRTs, and influent COD/TP ratios, and with split influent flows. The experimental results confirmed that EBPR could be incorporated successfully into IFAS systems, but the redistribution of biomass resulting from the integration of fixed film media, and the competition of organic substrate between EBPR and denitrification would affect performances. Also, the integration of fixed film media into the anoxic reactors affected performances differently from media in aerobic reactors.  相似文献   

19.
The removal of nitrate ions from aqueous solutions using OPMN-P membranes in the presence of high-molecular amines, such as polyhexamethylene guanidine and aethonium was studied. It was shown that within the range of pH 4?C7 the five-fold weight excess of amines makes possible to increase retention of nitrate ions up to 0.83 in case of polyhexamethylene guanidine and up to 0.76 in the case of aethonium. The influence of chlorides on the treatment process was also investigated. The interaction mechanisms in the ??membrane-high molecular amine-nitrates?? system were discussed.  相似文献   

20.
Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m3) into an anoxic aquifer with elevated iron (0.27 mmol L−1) and arsenic (0.27 μmol L−1) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments.Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (RFe) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system’s efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at RFe = ∼8). RAs did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic removal, but rather the injection volume. Additionally, no relation has been observed in this study between the amount of removed arsenic at different molar Fe:As ratios (28, 63, and 103) of the groundwater. It is proposed that the removal of arsenic was limited by the presence of other anions, such as phosphate, competing for the same adsorption sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号