首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A calibrated camera is essential for computer vision systems: the prime reason being that such a camera acts as an angle measuring device. Once the camera is calibrated, applications like three-dimensional reconstruction or metrology or other applications requiring real world information from the video sequences can be envisioned. Motivated by this, we address the problem of calibrating multiple cameras, with an overlapping field of view observing pedestrians in a scene walking on an uneven terrain. This problem of calibration on an uneven terrain has so far not been addressed in the vision community. We automatically estimate vertical and horizontal vanishing points by observing pedestrians in each camera and use the corresponding vanishing points to estimate the infinite homography existing between the different cameras. This homography provides constraints on intrinsic (or interior) camera parameters while also enabling us to estimate the extrinsic (or exterior) camera parameters. We test the proposed method on real as well as synthetic data, in addition to motion capture dataset and compare our results with the state of the art.  相似文献   

2.
Object tracking is an important task in computer vision that is essential for higher level vision applications such as surveillance systems, human-computer interaction, industrial control, smart compression of video, and robotics. Tracking, however, cannot be easily accomplished due to challenges such as real-time processing, occlusions, changes in intensity, abrupt motions, variety of objects, and mobile platforms. In this paper, we propose a new method to estimate and eliminate the camera motion in mobile platforms, and accordingly, we propose a set of optimal feature points for accurate tracking. Experimental results on different videos show that the proposed method estimates camera motion very well and eliminate its effect on tracking moving objects. And the use of optimal feature points results in a promising tracking. The proposed method in terms of accuracy and processing time has desirable results compared to the state-of-the-art methods.  相似文献   

3.
Detecting and tracking moving objects within a scene is an essential step for high-level machine vision applications such as video content analysis. In this paper, we propose a fast and accurate method for tracking an object of interest in a dynamic environment (active camera model). First, we manually select the region of the object of interest and extract three statistical features, namely the mean, the variance and the range of intensity values of the feature points lying inside the selected region. Then, using the motion information of the background’s feature points and k-means clustering algorithm, we calculate camera motion transformation matrix. Based on this matrix, the previous frame is transformed to the current frame’s coordinate system to compensate the impact of camera motion. Afterwards, we detect the regions of moving objects within the scene using our introduced frame difference algorithm. Subsequently, utilizing DBSCAN clustering algorithm, we cluster the feature points of the extracted regions in order to find the distinct moving objects. Finally, we use the same statistical features (the mean, the variance and the range of intensity values) as a template to identify and track the moving object of interest among the detected moving objects. Our approach is simple and straightforward yet robust, accurate and time efficient. Experimental results on various videos show an acceptable performance of our tracker method compared to complex competitors.  相似文献   

4.
针对移动镜头下的运动目标检测中的背景建模复杂、计算量大等问题,提出一种基于运动显著性的移动镜头下的运动目标检测方法,在避免复杂的背景建模的同时实现准确的运动目标检测。该方法通过模拟人类视觉系统的注意机制,分析相机平动时场景中背景和前景的运动特点,计算视频场景的显著性,实现动态场景中运动目标检测。首先,采用光流法提取目标的运动特征,用二维高斯卷积方法抑制背景的运动纹理;然后采用直方图统计衡量运动特征的全局显著性,根据得到的运动显著图提取前景与背景的颜色信息;最后,结合贝叶斯方法对运动显著图进行处理,得到显著运动目标。通用数据库视频上的实验结果表明,所提方法能够在抑制背景运动噪声的同时,突出并准确地检测出场景中的运动目标。  相似文献   

5.
In this paper, we discuss the issue of camera parameter estimation (intrinsic and extrinsic parameters), along with estimation of the geo-location of the camera by using only the shadow trajectories. By observing stationary objects over a period of time, it is shown that only six points on the trajectories formed by tracking the shadows of the objects are sufficient to estimate the horizon line of the ground plane. This line is used along with the extracted vertical vanishing point to calibrate the stationary camera. The method requires as few as two shadow casting objects in the scene and a set of six or more points on the shadow trajectories of these objects. Once camera intrinsic parameters are recovered, we present a novel application where one can accurately determine the geo-location of the camera up to a longitude ambiguity using only three points from these shadow trajectories without using any GPS or other special instruments. We consider possible cases where this ambiguity can also be removed if additional information is available. Our method does not require any knowledge of the date or the time when the images are taken, and recovers the date of acquisition directly from the images. We demonstrate the accuracy of our technique for both steps of calibration and geo-temporal localization using synthetic and real data.  相似文献   

6.
Silhouette coherence for camera calibration under circular motion   总被引:1,自引:0,他引:1  
We present a new approach to camera calibration as a part of a complete and practical system to recover digital copies of sculpture from uncalibrated image sequences taken under turntable motion. In this paper, we introduce the concept of the silhouette coherence of a set of silhouettes generated by a 3D object. We show how the maximization of the silhouette coherence can be exploited to recover the camera poses and focal length. Silhouette coherence can be considered as a generalization of the well-known epipolar tangency constraint for calculating motion from silhouettes or outlines alone. Further, silhouette coherence exploits all the geometric information encoded in the silhouette (not just at epipolar tangency points) and can be used in many practical situations where point correspondences or outer epipolar tangents are unavailable. We present an algorithm for exploiting silhouette coherence to efficiently and reliably estimate camera motion. We use this algorithm to reconstruct very high quality 3D models from uncalibrated circular motion sequences, even when epipolar tangency points are not available or the silhouettes are truncated. The algorithm has been integrated into a practical system and has been tested on more than 50 uncalibrated sequences to produce high quality photo-realistic models. Three illustrative examples are included in this paper. The algorithm is also evaluated quantitatively by comparing it to a state-of-the-art system that exploits only epipolar tangents  相似文献   

7.
A method of estimating range flow (space displacement vector field) on nonrigid as well as rigid objects from a sequence of range images is described. This method can directly estimate the deformable motion parameters by solving a system of linear equations that are obtained from substituting a linear transformation of nonrigid objects expressed by the Jacobian matrix into motion constraints based on an extension of the conventional scheme used in intensity image sequences. The range flow is directly computed by substituting these estimated motion parameters into the linear transformation. The algorithm is supported by experimental estimations of range flow on a sheet of paper, a piece of cloth, human skin, and a rubber balloon being inflated, using real range image sequences acquired by a video rate range camera  相似文献   

8.
This paper presents a novel method to accurately detect moving objects from a video sequence captured using a nonstationary camera. Although common methods provide effective motion detection for static backgrounds or through only planar-perspective transformation, many detection errors occur when the background contains complex dynamic interferences or the camera undergoes unknown motions. To solve this problem, this study proposed a motion detection method that incorporates temporal motion and spatial structure. In the proposed method, first, spatial semantic planes are segmented, and image registration based on stable background planes is applied to overcome the interferences of the foreground and dynamic background. Thus, the estimated dense temporal motion ensures that small moving objects are not missed. Second, motion pixels are mapped on semantic planes, and then, the spatial distribution constraints of motion pixels, regional shapes and plane semantics, which are integrated into a planar structure, are used to minimise false positives. Finally, based on the dense temporal motion and spatial structure, moving objects are accurately detected. The experimental results on CDnet dataset, Pbi dataset, Aeroscapes dataset, and other challenging self-captured videos under difficult conditions, such as fast camera movement, large zoom variation, video jitters, and dynamic background, revealed that the proposed method can remove background movements, dynamic interferences, and marginal noises and can effectively obtain complete moving objects.© 2017 ElsevierInc.Allrightsreserved.  相似文献   

9.
In this paper, we propose a new method for estimating camera motion parameters based on optical flow models. Camera motion parameters are generated using linear combinations of optical flow models. The proposed method first creates these optical flow models, and then linear decompositions are performed on the input optical flows calculated from adjacent images in the video sequence, which are used to estimate the coefficients of each optical flow model. These coefficients are then applied to the parameters used to create each optical flow model, and the camera motion parameters implied in the adjacent images can be estimated through a linear composition of the weighted parameters.We demonstrated that the proposed method estimates the camera motion parameters accurately and at a low computational cost as well as robust to noise residing in the video sequence being analyzed.  相似文献   

10.
Cao  Ming Wei  Jia  Wei  Zhao  Yang  Li  Shu Jie  Liu  Xiao Ping 《Neural computing & applications》2018,29(5):1383-1398

Some 3D computer vision techniques such as structure from motion (SFM) and augmented reality (AR) depend on a specific perspective-n-point (PnP) algorithm to estimate the absolute camera pose. However, existing PnP algorithms are difficult to achieve a good balance between accuracy and efficiency, and most of them do not make full use of the internal camera information such as focal length. In order to attack these drawbacks, we propose a fast and robust PnP (FRPnP) method to calculate the absolute camera pose for 3D compute vision. In the proposed FRPnP method, we firstly formulate the PnP problem as the optimization problem in the null space that can avoid the effects of the depth of each 3D point. Secondly, we can easily get the solution by the direct manner using singular value decomposition. Finally, the accurate information of camera pose can be obtained by optimization strategy. We explore four ways to evaluate the proposed FRPnP algorithm with synthetic dataset, real images, and apply it in the AR and SFM system. Experimental results show that the proposed FRPnP method can obtain the best balance between computational cost and precision, and clearly outperforms the state-of-the-art PnP methods.

  相似文献   

11.
目的 摄像机旋转扫描条件下的动目标检测研究中,传统的线性模型无法解决摄像机旋转扫描运动带来的图像间非线性变换问题,导致图像补偿不准确,在动目标检测时将引起较大误差,造成动目标虚假检测。为解决这一问题,提出了一种面阵摄像机旋转扫描条件下的图像补偿方法,其特点是能够同时实现背景运动补偿和图像非线性变换补偿,从而实现动目标的快速可靠检测。方法 首先进行图像匹配,然后建立摄像机旋转扫描非线性模型,通过参数空间变换将其转化为线性求解问题,采用Hough变换实现该方程参数的快速鲁棒估计。解决摄像机旋转扫描条件下获取的图像间非线性变换问题,从而实现图像准确补偿。在此基础上,可以利用帧间差分等方法检测出运动目标。结果 实验结果表明,在摄像机旋转扫描条件下,本文方法能够同时实现图像间的背景运动补偿和非线性变换补偿,可以去除大部分由于立体视差效应(parallax effects)产生的匹配错误。并且在实验中,本文方法处理速度可以达到50帧/s,满足实时性要求。结论 在面阵摄像机旋转扫描的条件下,相比于传统的基于线性模型的图像补偿方法,本文方法能够快速、准确地在背景补偿的基础上同时解决图像间非线性变换问题,从而更好地提取出运动目标,具有一定的实用价值。  相似文献   

12.
Automated virtual camera control has been widely used in animation and interactive virtual environments. We have developed a multiple sparse camera based free view video system prototype that allows users to control the position and orientation of a virtual camera, enabling the observation of a real scene in three dimensions (3D) from any desired viewpoint. Automatic camera control can be activated to follow selected objects by the user. Our method combines a simple geometric model of the scene composed of planes (virtual environment), augmented with visual information from the cameras and pre-computed tracking information of moving targets to generate novel perspective corrected 3D views of the virtual camera and moving objects. To achieve real-time rendering performance, view-dependent textured mapped billboards are used to render the moving objects at their correct locations and foreground masks are used to remove the moving objects from the projected video streams. The current prototype runs on a PC with a common graphics card and can generate virtual 2D views from three cameras of resolution 768×576 with several moving objects at about 11 fps.  相似文献   

13.
We present a system for automatically extracting the region of interest (ROI) and controlling virtual cameras' control based on panoramic video. It targets applications such as classroom lectures and video conferencing. For capturing panoramic video, we use the FlyCam system that produces high resolution, wide-angle video by stitching video images from multiple stationary cameras. To generate conventional video, a region of interest can be cropped from the panoramic video. We propose methods for ROI detection, tracking, and virtual camera control that work in both the uncompressed and compressed domains. The ROI is located from motion and color information in the uncompressed domain and macroblock information in the compressed domain, and tracked using a Kalman filter. This results in virtual camera control that simulates human controlled video recording. The system has no physical camera motion and the virtual camera parameters are readily available for video indexing.  相似文献   

14.
In this paper, we present a novel method to extract motion of a dynamic object from a video that is captured by a handheld camera, and apply it to a 3D character. Unlike the motion capture techniques, neither special sensors/trackers nor a controllable environment is required. Our system significantly automates motion imitation which is traditionally conducted by professional animators via manual keyframing. Given the input video sequence, we track the dynamic reference object to obtain trajectories of both 2D and 3D tracking points. With them as constraints, we then transfer the motion to the target 3D character by solving an optimization problem to maintain the motion gradients. We also provide a user-friendly editing environment for users to fine tune the motion details. As casual videos can be used, our system, therefore, greatly increases the supply source of motion data. Examples of imitating various types of animal motion are shown.  相似文献   

15.
视频序列的全景图拼接技术   总被引:10,自引:0,他引:10       下载免费PDF全文
提出了一种对视频序列进行全景图拼接的方法。主要讨论了有大面积的非刚性运动物体出现的序列,不过此方法也同样适用于无运动物体的纯背景序列。为计算各帧间的投影关系,用仿射模型来描述摄像机运动,并用特征点匹配的方法计算出模型中各参数的值。由于用相关法计算的匹配结果准确率比较低,所以用RANSAC(Random Sampling Consensus)对匹配结果进行了筛选,可以准确求出摄像机运动参数。利用运动参数进行投影,然后用多帧相减并求交集,估计出每帧图像中运动物体存在的区域,最后计算得到了全景图。该方法的结果与前人得到的结果进行了比较,证明用此方法能获得质量较高的全景图。  相似文献   

16.
In the field of augmented reality (AR), many kinds of vision-based extrinsic camera parameter estimation methods have been proposed to achieve geometric registration between real and virtual worlds. Previously, a feature landmark-based camera parameter estimation method was proposed. This is an effective method for implementing outdoor AR applications because a feature landmark database can be automatically constructed using the structure-from-motion (SfM) technique. However, the previous method cannot work in real time because it entails a high computational cost or matching landmarks in a database with image features in an input image. In addition, the accuracy of estimated camera parameters is insufficient for applications that need to overlay CG objects at a position close to the user's viewpoint. This is because it is difficult to compensate for visual pattern change of close landmarks when only the sparse depth information obtained by the SfM is available. In this paper, we achieve fast and accurate feature landmark-based camera parameter estimation by adopting the following approaches. First, the number of matching candidates is reduced to achieve fast camera parameter estimation by tentative camera parameter estimation and by assigning priorities to landmarks. Second, image templates of landmarks are adequately compensated for by considering the local 3-D structure of a landmark using the dense depth information obtained by a laser range sensor. To demonstrate the effectiveness of the proposed method, we developed some AR applications using the proposed method.  相似文献   

17.
Video understanding has attracted significant research attention in recent years, motivated by interest in video surveillance, rich media retrieval and vision-based gesture interfaces. Typical methods focus on analyzing both the appearance and motion of objects in video. However, the apparent motion induced by a moving camera can dominate the observed motion, requiring sophisticated methods for compensating for camera motion without a priori knowledge of scene characteristics. This paper introduces two new methods for global motion compensation that are both significantly faster and more accurate than state of the art approaches. The first employs RANSAC to robustly estimate global scene motion even when the scene contains significant object motion. Unlike typical RANSAC-based motion estimation work, we apply RANSAC not to the motion of tracked features but rather to a number of segments of image projections. The key insight of the second method involves reliably classifying salient points into foreground and background, based upon the entropy of a motion inconsistency measure. Extensive experiments on established datasets demonstrate that the second approach is able to remove camera-based observed motion almost completely while still preserving foreground motion.  相似文献   

18.
目的 RGB-D相机的外参数可以被用来将相机坐标系下的点云转换到世界坐标系的点云,可以应用在3维场景重建、3维测量、机器人、目标检测等领域。 一般的标定方法利用标定物(比如棋盘)对RGB-D彩色相机的外参标定,但并未利用深度信息,故很难简化标定过程,因此,若充分利用深度信息,则极大地简化外参标定的流程。基于彩色图的标定方法,其标定的对象是深度传感器,然而,RGB-D相机大部分则应用基于深度传感器,而基于深度信息的标定方法则可以直接标定深度传感器的姿势。方法 首先将深度图转化为相机坐标系下的3维点云,利用MELSAC方法自动检测3维点云中的平面,根据地平面与世界坐标系的约束关系,遍历并筛选平面,直至得到地平面,利用地平面与相机坐标系的空间关系,最终计算出相机的外参数,即相机坐标系内的点与世界坐标系内的点的转换矩阵。结果 实验以棋盘的外参标定方法为基准,处理从PrimeSense相机所采集的RGB-D视频流,结果表明,外参标定平均侧倾角误差为-1.14°,平均俯仰角误差为4.57°,平均相机高度误差为3.96 cm。结论 该方法通过自动检测地平面,准确估计出相机的外参数,具有很强的自动化,此外,算法具有较高地并行性,进行并行优化后,具有实时性,可应用于自动估计机器人姿势。  相似文献   

19.
When broadcasting sports events such as football, it is useful to be able to place virtual annotations on the pitch, to indicate things such as distances between players and the goal, or whether a player is offside. This requires the camera position, orientation, and focal length to be estimated in real time, so that the graphics can be rendered to match the camera view. Whilst this can be achieved by using sensors on the camera mount and lens, they can be impractical or expensive to install, and often the broadcaster only has access to the video feed itself. This paper presents a method for computing the position, orientation and focal length of a camera in real time, using image analysis. The method uses markings on the pitch, such as arcs and lines, to compute the camera pose. A novel feature of the method is the use of multiple images to improve the accuracy of the camera position estimate. A means of automatically initialising the tracking process is also presented, which makes use of a modified form of Hough transform. The paper shows how a carefully chosen set of algorithms can provide fast, robust and accurate tracking for this real-world application.  相似文献   

20.
Using vanishing points for camera calibration   总被引:42,自引:1,他引:42  
In this article a new method for the calibration of a vision system which consists of two (or more) cameras is presented. The proposed method, which uses simple properties of vanishing points, is divided into two steps. In the first step, the intrinsic parameters of each camera, that is, the focal length and the location of the intersection between the optical axis and the image plane, are recovered from a single image of a cube. In the second step, the extrinsic parameters of a pair of cameras, that is, the rotation matrix and the translation vector which describe the rigid motion between the coordinate systems fixed in the two cameras are estimated from an image stereo pair of a suitable planar pattern. Firstly, by matching the corresponding vanishing points in the two images the rotation matrix can be computed, then the translation vector is estimated by means of a simple triangulation. The robustness of the method against noise is discussed, and the conditions for optimal estimation of the rotation matrix are derived. Extensive experimentation shows that the precision that can be achieved with the proposed method is sufficient to efficiently perform machine vision tasks that require camera calibration, like depth from stereo and motion from image sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号