共查询到20条相似文献,搜索用时 26 毫秒
1.
图像分割是把图像分成若干个特定的、具有独特性质的区域并提取感兴趣目标的技术和过程,其结果将直接影响到目标物特征提取和描述,以及更进一步的目标物识别、分类和图像理解。因图像信息的复杂性和相关性,图像分割会出现不确定性和模糊性。图像用变精度粗糙集表示,结合粗糙熵和粒子群优化算法,提出变精度粗糙熵的图像分割算法,求出最大粗糙熵对应的最佳分割阈值,再用二值分割法对图像进行分割。实验结果表明,所提算法优于传统的单阈值分割法,且具有一定实用性和灵活性。 相似文献
2.
图像处理是获取信息的重要途径且被广泛地应用到军事、医学和交通等重要领域,图像分割在图像处理中占有重要地位。针对图像处理分割过程中的不确定性,为获取更加精确的图像分割效果,提出变精度最小平方粗糙熵和粒子群的图像单阈值分割算法。该单阈值分割算法用变精度粗糙集表示图像,以变精度最小平方粗糙熵求解最佳分割阈值,借助粒子群优化算法提高分割效率。实验表明,该单阈值分割算法明显优于最大平均信息熵法,且说明了变精度粗糙熵能够处理图像分割过程出现的不确定性。 相似文献
3.
Multimedia Tools and Applications - Rough-set based multimodal histogram thresholding technique is effective for medical image segmentation. However, it is difficult to obtain the significant peaks... 相似文献
4.
以往的免疫遗传聚类算法都要事先设置聚类数及聚类中心,采取的是有教师学习的方式,对环境的适应性不太。结合免疫网络算法和免疫遗传分类,提出了事先通过一种无教师学习,确定聚类数及聚类中心的免疫遗传分类算法,同时在聚类分类的基础上运用粗糙集对图像进行分割。通过对人脑MR图片的聚类和分割实验,验证了该方法的有效性。 相似文献
5.
为了解决多主体图像分割的交互分割问题,提出了一种基于SLIC超像素的自适应图像分割算法。首先利用SLIC对图像进行超像素分割处理,把原图像分割为大小相似、形状规则的超像素,以超像素中心点的五维特征值作为原始数据点通过自适应参数的DBSCAN算法聚类,确定多主体数目和分割边界。算法不需要用户交互,自适应确定分割数目。为了验证算法的有效性,在伯克利大学标准数据集BSDS500上与人工标注的分割图像进行比较,
前期的超像素处理使算法在时间上有很好的提升,对于一幅481×321像素的图像,只需要1.5 s就可以获得结果。实验结果表明,该方法可以有效解决多主体图像分割中的人工交互问题,同时在PRI和VOI的指数对比上也优于传统算法,本文算法可以在保证分割效果的基础上自适应确定分割数目,提高分割效率。 相似文献
6.
基于参数化模型的图像分割算法对复杂的医学图像分割精度较低,对此提出一种基于改进粗糙集概率模型的鲁棒医学图像分割算法。首先,将粗糙集的上下逼近与概率边界区引入最大期望算法中,表征每个类簇;然后,将图像的灰度分布建模为一个有限数量的混合粗糙集概率分布;最终,通过马尔可夫随机场引入图像的空间信息,提高图像分割算法的鲁棒性。基于合成脑部MR(核磁共振)图像库与真实脑部MR图像库的分割实验结果显示,本算法的分割精度与鲁棒性均优于其他参数化模型的分割算法及其他专门的脑部MR图像分割算法。 相似文献
7.
魏峻 《计算机工程与应用》2014,50(10):96-100
入侵检测领域的数据往往具有高维性及非线性特点,且其中含有大量的噪声、冗余及连续型属性,这就使得一般的模式分类方法不能对其进行有效的处理。为了进一步提高入侵检测效果,提出了基于邻域粗糙集的入侵检测集成算法。采用Bagging技术产生多个具有较大差异性的训练子集,针对入侵检测数据的连续型特点,在各训练子集上使用具有不同半径的邻域粗糙集模型进行属性约简,消除冗余与噪声,实现属性约简以提高属性子集的分类性能,同时也获得具有更大差异性的训练子集,采用SVM为分类器训练多个基分类器,以各基分类器的检测精度构造权重进行加权集成。KDD99数据集的仿真实验结果表明,该算法能有效地提高入侵检测的精度和效率,具有较高的泛化性和稳定性。 相似文献
8.
属性约简是粗糙集理论中的重要问题。许多学者针对邻域粗糙集提出多种属性约简方法,包括应用最为广泛的启发式算法。在多半径邻域粗糙集的基础上,针对当前启发式约简算法往往会包含一定冗余属性的缺陷,提出一种融合属性权重影响的改进约简运算方法,通过根据各属性权值大小设置阈值使得约简结果能够消除冗余属性。实验选取UCI的数据集与当前几种常用启发式约简算法进行比较分析。实验结果表明,所提出的属性约简方法能够得到更优的约简集合,同时更大程度地保留了决策表本身的知识信息,具有较高的分类能力。 相似文献
9.
对医学图像进行分类时,特征选择是影响分类准确率的非常重要的因素。针对医学图像的特殊性,以及目前提出的特征选择算法在应用于医学图像分类时效果不够理想等问题,提出一种基于邻域关系的模糊粗糙集模型,基于该模型给出特征选择算法,并将其应用于乳腺X光图像。实验结果表明,同已有的算法相比,该方法能有效选择特征,分类精度有较大的提升。 相似文献
10.
11.
属性约简是机器学习等领域中常用的数据预处理方法。在基于粗糙集理论的属性约简算法中,大多是根据单一的方法来度量属性重要度。为了从多角度对属性达到更为优越的评估效果,首先在已有的模糊邻域粗糙集模型中定义属性依赖度度量,然后根据粒计算理论中知识粒度的概念,在模糊邻域粗糙集模型下提出了模糊邻域粒度度量。由于属性依赖度和知识粒度代表了不同视角的属性评估方法,因此将这两种方法结合起来用于信息系统的属性重要度评估,最后给出一种启发式属性约简算法。实验结果表明,所提出的算法具有较好的属性约简性能。 相似文献
12.
近年来,超像素算法被应用到计算机视觉的各个领域。超像素捕获图像冗余信息,降低图像后续处理的复杂度。超像素分割作为图像的预处理过程需要满足图像处理的实时性和准确性。在SLIC算法的框架下,所提算法的主要目的是提高超像素分割的效率;通过原图像降尺度过程,提取原图像中少量像素,生成降尺度图像;利用SLIC算法对降尺度图像进行超像素分割;初次超像素分割之后,根据降尺度图像的分割结果对原图像中像素进行K近邻分类,实现原图像的超像素最终分割结果。实验表明,对于同一处理对象,在准确度相近的状态下,本算法处理速度高于SLIC算法。 相似文献
13.
赵晖 《计算机工程与应用》2013,49(18):73-77
入侵检测数据往往含有大量的冗余、噪音特征及部分连续型属性,为了提高网络入侵检测的效果,利用邻域粗糙集对入侵检测数据集进行属性约简,消除冗余属性及噪声,也避免了传统粗糙集在连续型属性离散化过程中带来的信息损失;使用粒子群算法优化支持向量机的核函数参数和惩罚参数,以避免靠主观选择参数带来精度较低的风险,进一步提高入侵检测的性能。仿真实验结果表明,该算法能有效提高入侵检测的精度,具有较高的泛化性和稳定性。 相似文献
14.
基于正域的属性约简算法是利用"下近似"思想,仅考虑被正确区分样本数的约简算法。借鉴"上近似"的思想,利用"邻域信息粒"的概念定义了区分对象集,探讨了其基本性质,并提出了基于区分对象集的属性重要度度量及启发式属性约简算法。该约简算法既考虑信息决策表的相对正域,也考虑以核属性为启发信息逐个增加条件属性时对边界域样本的影响。通过实例分析,说明了所提算法的可行性,并且以6个UCI标准数据集为实验对象,与基于正域的属性约简算法进行对比实验。实验结果说明,采用提出的约简算法得到的约简属性集,与基于正域的属性约简算法相比,在进行分类任务时的分类精度能够保持不变或有所提高。 相似文献
15.
针对经典的帝王蝶优化(MBO)算法不能很好地处理连续型数据,以及粗糙集模型对于大规模、高维复杂的数据处理能力不足等问题,提出了基于邻域粗糙集(NRS)和MBO的特征选择算法。首先,将局部扰动和群体划分策略与MBO算法结合,并构建传输机制以形成一种二进制MBO(BMBO)算法;其次,引入突变算子增强算法的探索能力,设计了基于突变算子的BMBO(BMBOM)算法;然后,基于NRS的邻域度构造适应度函数,并对初始化的特征子集的适应度值进行评估并排序;最后,使用BMBOM算法通过不断迭代搜索出最优特征子集,并设计了一种元启发式特征选择算法。在基准函数上评估BMBOM算法的优化性能,并在UCI数据集上评价所提出的特征选择算法的分类能力。实验结果表明,在5个基准函数上,BMBOM算法的最优值、最差值、平均值以及标准差明显优于MBO和粒子群优化(PSO)算法;在UCI数据集上,与基于粗糙集的优化特征选择算法、结合粗糙集与优化算法的特征选择算法、结合NRS与优化算法的特征选择算法、基于二进制灰狼优化的特征选择算法相比,所提特征选择算法在分类精度、所选特征数和适应度值这3个指标上表现良好,能够选择特征数少且分类精度高的最优特征子集。 相似文献
16.
基于期望最大化的水平集分割算法 总被引:1,自引:0,他引:1
针对经典的水平集算法(比如Chan-Vese模型算法)在迭代过程中要重新初始化和容易受噪声和模棱两可的边界的影响的缺点,增加一项内部能量泛函达到不需重新初始化的目的,并结合贝叶斯决策理论,利用图像先验知识,提出了一个改进的能量函数,根据符号距离函数来不断调整水平集函数的偏差。该函数是利用期望最大化算法来得到的。实验结果表明,该算法分割精度和运行准确率上都优于经典算法。 相似文献
17.
目前,邻域多粒度粗糙集模型广泛采用的距离函数闵可夫斯基距离存在着一定的局限性,通过引入兰氏距离作为距离函数,重构了邻域半径的选取方法,基于此提出一种改进的邻域多粒度粗糙集模型,并证明了相关的性质。采用UCI标准库数据集进行实验分析,对比两种模型的实验结果,验证了改进邻域多粒度粗糙集模型在近似逼近方面的优越性。 相似文献
18.
19.
为了能更好地进行多传感器图像融合,提出了一种基于双层并行PCNN和粗集理论的图像融合方法。该方法首先对两幅图像去噪,将一幅图像作为主PCNN网络的输入,另一幅图像作为从PCNN网络的输入,计算每幅图像的清晰度,分别将每幅图像的清晰度矩阵送入主从PCNN网络处理,然后根据粗集理论对原始图像分类,最后生成融合图像。该方法不仅能保留原图像信息,而且得到的融合图像清晰度高、对比度大。仿真实验结果以及与其他融合算法的比较,表明该算法的有效性和优越性。 相似文献
20.
作为粗糙集的一种推广,模糊粗糙集在属性约简中的应用尤为重要.约简规模和约简依赖度作为评判约简性能的两个重要指标,分别对应着约简的效率以及精度.传统的约简算法通常以追求约简的最大依赖度为导向进行寻优,并没有直接考虑约简的规模大小.基于此,强调所得约简的规模大小在约简运算中的重要性,并提出一种基于邻域变异信息的多目标差分算法,在约简运算中将约简的规模也作为单独的优化目标,将属性约简问题转化为多目标优化问题,综合考虑约简在属性数量和依赖度两方面的性能.通过引入目标支配排序,使得可以从属性数量和依赖度误差两方面对所得约简的性能进行约束,并得到目标约束内的约简结果.选取UCI上的数据集进行实验分析,实验结果表明,所提算法可以在目标约束内得到更加全面的约简结果,具有一定的可行性,是一种有效的约简算法. 相似文献