首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
电沉积纳米镍合金及其复合材料的超塑性   总被引:1,自引:0,他引:1  
采用脉冲电沉积技术制备纳米镍合金及Ni/Si3N4(w)复合材料,在应变速率为1×10-3~2×10-2 s-1,温度为673~823 K的条件下,研究它们的超塑性拉伸变形行为,确定最佳超塑性条件并获得最大伸长率.结果表明,Ni-Co合金在773 K,应变速率5×10-3 s-1时,最大伸长率为279%;Ni/Si3N4(w)复合材料在713 K,应变速率1×10-2 s-1时,最大伸长率为635%.采用SEM 和TEM对电沉积和超塑变形前后试件的显微结构进行表征.应用晶粒长大行为和协调机制对合金和复合材料的超塑性进行对比研究和讨论.  相似文献   

2.
试验研究了供应态2B70铝合金经普通退火处理后在不同变形工艺下的超塑性变化规律.结果表明:采用3.3×10-4 s-1的初始应变速率,在360℃~490℃的拉伸温度范围内2B70铝合金具有一定的超塑性.450℃为合金的最佳超塑性拉伸温度,3.3×10-4 s-1为最佳初始应变速率,在最佳超塑性条件下合金的最大伸长率达到193.3%,流动应力为13.94 MPa.在超塑性拉伸过程中,由于不断发生动态回复及再结晶,晶粒趋于明显细化和等轴化.合金的超塑性变形是以晶界滑移为主的变形机制,在较低拉伸温度及较高初始应变速率下晶界滑移痕迹较少,表现出明显的晶间断裂特征.  相似文献   

3.
Al-6Mg-0.2Sc合金高应变速率超塑成形性能   总被引:1,自引:0,他引:1  
在温度400~500℃、初始应变速率为2.0×10-4~2.0×10-2 s-1的条件下,对Al-6Mg-0.2Sc合金冷轧板材(初始晶粒尺寸为25μm)进行了相应的超塑性能、高应变速率超塑性胀形成形实验研究.结果表明:在450℃、初始应变速率为2.0×10-2s-1的实验条件下,Al-6Mg-0.2Sc合金冷轧板材具有高应变速率的超塑性能,其最大延伸率为421%;在高应变速率条件下,胀形成形大端直径为d154 mm,深度h为80 mm的锥形零件的成形时间为73 s,成形后零件的壁厚变薄的不均匀率小于8%.此外,还对成形零件的微观组织进行了初步的SEM观察分析.结果表明,成形零件的微观组织无明显粗化,其孔洞率小于1.5%.  相似文献   

4.
对Ti-23Al-17Nb合金在温度为940~1000℃,恒应变速率为1.7×10-3~5.5×10-5s-1下的单向超塑拉伸变形行为进行了研究.结果表明,随着变形温度的升高,延伸率先增加后减小,在960℃,5.5×10-5s-1条件下获得最大延伸率为1447.5%.低应变速率条件下,Nb含量的增加使合金的加工硬化阶段增加.超塑变形有利于消除原始织构组织,对比原始组织,超塑拉伸过程中长条a2相发生了球化,并且其尺寸和含量随着温度升高逐渐减少,a2和B2相比例为50∶50时可达到最佳变形.利用Zener-Hollomn参数和Arrhenius方程建立了TAC-1B合金的峰值应力本构方程,其变形激活能Q=390.76 kJ/mol,为科学设计和有效控制Ti-23Al-17Nb合金的超塑成形工艺提供了理论依据.  相似文献   

5.
研究了Ti-24Al-15Nb-1.5Mo合金在900~1020 ℃,3.3×10-4~3.3×10-2 s-1条件下进行的超塑性拉伸性能结果表明:除温度900 ℃,应变速率3.3×10-2 s-1外,合金都显示出超塑性,延伸率范围为105%~1570%,最佳变形温度为980 ℃,最佳应变速率为3.3×10-4 s-1,在此条件下拉伸时,延伸率达到最大值1570%.应变速率对Ti-24Al-15Nb-1.5Mo合金的组织演化有显著影响.在较高应变速率下变形,α2相尺寸先随温度升高至940 ℃有所减小,之后则随温度的升高有所粗化;而在较低的应变速率下变形,α2相呈粗化且不均匀的趋势,高的延伸率与大晶粒周围镶嵌许多小颗粒能有效协调变形.  相似文献   

6.
超塑变形对ZA27合金性能的影响   总被引:1,自引:0,他引:1  
研究了ZA27合金的超塑性和超塑变形对力学性能的影响。得到最佳超塑参数为:变形温度280℃;初始应变速率6.6×10-2s-1,最大伸长率δ5达980%。在300℃经总变形量为35%的超塑变形后,与金属型重力铸造试样相比,抗拉强度稍有提高,伸长率可提高10%以上。  相似文献   

7.
研究了LD10铝合金经不同组织预处理后的超塑性能。结果表明,工业供应态热轧棒材经380℃、420℃、460℃再结晶退火处理或500℃固溶处理后可获得细小的等轴晶粒组织和较好的超塑性,平均伸长率达到219%以上,个别试样伸长率可高达321%(热轧棒材的伸长率为152%)。经420℃退火处理后,在460~510℃变形温度范围内,及在1.1×10-2s-1~1.1×10-4s-1应变速率范围内,合金均具有超塑性,平均伸长率为108%~232%。本文所得的最佳超塑性温度为500℃~510℃,最佳应变速率为3.3×10-4s-1。在此温度和应变速率条件下,平均伸长率达到223%~232%,流动应力仅为10.4~13.0MPa。  相似文献   

8.
采用一种新型形变热处理方法在工业条件下制备了1420铝锂合金超塑性板材,通过高温拉伸、金相、扫描电镜观察等检测分析手段研究了该板材的超塑性能.组织观察表明,该板材具有扁平状的晶粒组织和较强的形变织构;当试样在475~525℃和5×10-4~1×10-3s-1条件拉伸时,最高伸长率为480%.通过改变变形温度和应变速率的两阶段拉伸和变形前再结晶退火处理,最高超塑性伸长率分别提高到600%和960%.  相似文献   

9.
《塑性工程学报》2013,(6):98-102
通过单轴超塑性拉伸试验,研究细晶1420铝锂合金在440℃500℃温度范围和1×10-4s-1500℃温度范围和1×10-4s-11×10-2s-1初始应变速率范围内的超塑性变形行为,揭示其变形性能与工艺参数的相关性。结果表明,细晶1420铝锂合金超塑变形真应力-真应变曲线呈现两种典型的流变特征,即当变形初始应变速率低于0.0003s-1时,表现为稳态型;当初始应变速率高于0.0003s-1时,以软化型为主,且随着变形温度的升高和应变速率的降低,峰值应力降低。合金的最佳超塑性变形条件为480℃、1×10-4s-1,在该条件下,延伸率达到550%。随着应变速率的升高,延伸率降低;随变形温度的升高,延伸率则呈先升高后降低的趋势。利用多试样法进行线性拟合,获得试验条件下细晶1420铝锂合金的应变速率敏感性指数m值在0.411×10-2s-1初始应变速率范围内的超塑性变形行为,揭示其变形性能与工艺参数的相关性。结果表明,细晶1420铝锂合金超塑变形真应力-真应变曲线呈现两种典型的流变特征,即当变形初始应变速率低于0.0003s-1时,表现为稳态型;当初始应变速率高于0.0003s-1时,以软化型为主,且随着变形温度的升高和应变速率的降低,峰值应力降低。合金的最佳超塑性变形条件为480℃、1×10-4s-1,在该条件下,延伸率达到550%。随着应变速率的升高,延伸率降低;随变形温度的升高,延伸率则呈先升高后降低的趋势。利用多试样法进行线性拟合,获得试验条件下细晶1420铝锂合金的应变速率敏感性指数m值在0.410.48范围内,超塑变形激活能Q在43.5kJ/mol0.48范围内,超塑变形激活能Q在43.5kJ/mol79.7kJ/mol范围内。  相似文献   

10.
1.31%C超高碳钢的压缩超塑性研究   总被引:3,自引:1,他引:2  
通过观察退火态w(C)=1.31%超高碳钢超塑压缩试样的外观形态.测定其压缩真应力一真应变曲线,探讨了超塑压缩温度、应变速率对超高碳钢压缩超塑性的影响.结果表明,超高碳钢在750~790℃、(0.8~2)×10-3s-1超塑压缩条件下,其应变速率敏感性指数大于0.3,呈现出压缩超塑性变形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号