首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel hybrid process that integrates end electric discharge (ED) milling and mechanical grinding is proposed. The process is able to effectively machine a large surface area on SiC ceramic with good surface quality and fine working environmental practice. The polarity, pulse on-time, and peak current are varied to explore their effects on the surface integrity, such as surface morphology, surface roughness, micro-cracks, and composition on the machined surface. The results show that positive tool polarity, short pulse on-time, and low peak current cause a fine surface finish. During the hybrid machining of SiC ceramic, the material is mainly removed by end ED milling at rough machining mode, whereas it is mainly removed by mechanical grinding at finish machining mode. Moreover, the material from the tool can transfer to the workpiece, and a combination reaction takes place during machining.  相似文献   

2.
Industrial applications of the micro milling process require sufficient experimental data from various micro tools. Research has been carried out on micro milling of various engineering materials in the past two decades. However, there is no report in the literature on micro milling of graphite. This paper presents an experimental investigation on micro machinability of micro milling of moulded fine-grained graphite. Full immersion slot milling was conducted using diamond-coated, TiAlN-coated and uncoated tungsten carbide micro end mills with a uniform tool diameter of 0.5 mm. The experiments were carried out on a standard industrial precision machining centre with a high-speed micro machining spindle. Design of experiments (DoE) techniques were applied to design and analysis of the machining process. Surface roughness, surface topography and burrs formation under varying machining conditions were characterized using white light interferometry, SEM and a precision surface profiler. Influence of variation of cutting parameters including cutting speeds, feedrate and axial depth of cut on surface roughness and surface damage was analysed using ANOVA method. The experimental results show that feedrate has the most significant influence on surface roughness for all types of tools, and diamond tools are not sensitive to cutting speed and depth of cut. Surface damage and burrs analysis show that the primary material removal mode is still brittle fracture or partial ductile in the experimental cutting conditions. 3D intricate micro EDM electrodes were fabricated with good dimensional accuracy and surface finishes using optimized machining conditions to demonstrate that micro milling is an ideal process for graphite machining.  相似文献   

3.
This paper presents an efficient five-axis machining method of centrifugal impeller based on regional milling. As the base of the machining method, geometry of the centrifugal impeller and blade surface is analyzed, and sub-machining regions are presented through the division of the double three-cubic d non-uniform rational B-spline (NURBS) surface. In rough milling, the cutter parameters, tool path interval, tool path curves, and the fixed tool axis vector are calculated by the novel algorithm based on regional milling; the biggest cutter and smaller tool path length are obtained. In finish milling, for the aerodynamic performance of the finished impeller, the tool path curves are modified and interlinked to make them uniform and orderly. A modified algorithm of the finish milling of the blade surface is proposed, and not only are the machining errors reduced; their reasonable distribution is also realized. Numerical simulation and a real test impeller are presented as the test of the proposed method.  相似文献   

4.
Electrical discharge machining (EDM) is one of the advanced methods of machining. Most publications on the EDM process are directed towards non-rotational tools. But rotation of the tool provides a good flushing in the machining zone. In this study, the optimal setting of the process parameters on rotary EDM was determined. A total of three variables of peak current, pulse on time, and rotational speed of the tool with three types of electrode were considered as machining parameters. Then some experiments have been performed by using Taguchi's method to evaluate the effects of input parameters on material removal rate, electrode wear rate, surface roughness, and overcut. Moreover, the optimal setting of the parameters was determined through experiments planned, conducted, and analyzed using the Taguchi method. Results indicate that the model has an acceptable performance to optimize the rotary EDM process.  相似文献   

5.
This paper discusses automatic tool path generation for five-axis filleted end mill finish-surface machining. A new method of automatic five-axis tool path generation is introduced called Grind-Free (GF) tool path generation. GF surfaces result from tool paths that avoid gouging and have scallops that are within the surface profile or waviness tolerances. New algorithms are presented for determining tool forward step and tool path step-over that produce a GF surface. Gouge-free tool paths can be generated directly from CAD data based solely on local and global machining constraints. The proposed methodology for GF tool path generation has been implemented in the C language using the CODE/Robline system. Surfaces were machined on a Boston Digital 505 five-axis milling machine to confirm this method.  相似文献   

6.
Optimization of cutting parameters is valuable in terms of providing high precision and efficient machining. Optimization of machining parameters for milling is an important step to minimize the machining time and cutting force, increase productivity and tool life and obtain better surface finish. In this work a mathematical model has been developed based on both the material behavior and the machine dynamics to determine cutting force for milling operations. The system used for optimization is based on powerful artificial intelligence called genetic algorithms (GA). The machining time is considered as the objective function and constraints are tool life, limits of feed rate, depth of cut, cutting speed, surface roughness, cutting force and amplitude of vibrations while maintaining a constant material removal rate. The result of the work shows how a complex optimization problem is handled by a genetic algorithm and converges very quickly. Experimental end milling tests have been performed on mild steel to measure surface roughness, cutting force using milling tool dynamometer and vibration using a FFT (fast Fourier transform) analyzer for the optimized cutting parameters in a Universal milling machine using an HSS cutter. From the estimated surface roughness value of 0.71 μm, the optimal cutting parameters that have given a maximum material removal rate of 6.0×103 mm3/min with less amplitude of vibration at the work piece support 1.66 μm maximum displacement. The good agreement between the GA cutting forces and measured cutting forces clearly demonstrates the accuracy and effectiveness of the model presented and program developed. The obtained results indicate that the optimized parameters are capable of machining the work piece more efficiently with better surface finish.  相似文献   

7.
This paper describes hard machining which offers many potential benefits over traditional manufacturing techniques. In this work, investigations were carried out on end milling of hardened tool steel DIEVAR (hardness 50 HRC), a newly developed tool steel material used by tool- and die-making industries. The objective of the present investigation was to study the performance characteristics of machining parameters such as cutting speed, feed, depth of cut and width of cut with due consideration to multiple responses, i.e. volume of material removed, tool wear, tool life and surface finish. Performance evaluation of physical vapour deposition-coated carbide inserts, ball end mill cutter and polycrystalline cubic boron nitride inserts (PCBN) was done for rough and finish machining on the basis of flank wear, tool life, volume of material removed, surface roughness and chip formation. It has been observed from investigations that chipping, diffusion and adhesion were active tool wear mechanisms and saw-toothed chips were formed whilst machining DIEVAR hard steel. PCBN inserts give an excellent performance in terms of tool life and surface finish in comparison with carbide-coated inserts. End milling technique using PCBN inserts could be a viable alternative to grinding in comparison to ball end mill cutter in terms of surface finish and tool life.  相似文献   

8.
Micrometer-scale machining: tool fabrication and initial results   总被引:3,自引:0,他引:3  
Conventional milling techniques scaled to ultrasmall dimensions have been used to machine polymethyl methacrylate (PMMA) with micrometer-sized milling tools. The object of this work is to achieve machining of a common material over dimensions exceeding 1 mm while holding submicrometer tolerances and micrometer size features. Fabricating the milling tools themselves was also an object of the study. A tool geometry for nominal 25 micrometer diameter cutting tools was found that cuts PMMA with submicrometer tolerances over trench lengths of 2 mm. The tool shape is a simple planar facet cut by focused ion beam milling on ground and polished 25 micrometer diameter steel tool blanks. Pairs of trenches 24 micrometers wide, 26 micrometers deep, 2.3 mm long, with a 14 micrometer separation were milled under various machining conditions. The results indicate that the limits of the machining process in terms of speed, pattern complexity, and tolerances have not been approached. This is the first demonstration of a generic method for microtool making by focused ion beam machining combined with ultraprecision numerically controlled milling. The method is shown to be capable of producing structures and geometries that are considered inaccessible by conventional materials removal techniques, and generally regarded as applications for deep X-ray lithography.  相似文献   

9.
A new method for 5-axis flank computer numerically controlled (CNC) machining is proposed. A set of tappered ball-end-mill tools (aka conical milling tools) is given as the input and the flank milling paths within user-defined tolerance are returned. Thespace of lines that admit tangential motion of an associated truncated cone along a general, doubly curved, free-form surface is explored. These lines serve as discrete positions of conical axes in 3D space. Spline surface fitting is used to generate a ruled surface that represents a single continuous sweep of a rigid conical milling tool. An optimization-based approach is then applied to globally minimize the error between the design surface and the conical envelope. The milling simulations are validated with physical experiments on two benchmark industrial datasets, reducing significantly the execution times while preserving or even reducing the milling error when compared to the state-of-the-art industrial software.  相似文献   

10.
Decreasing vibration amplitude during end milling process reduces tool wear and improves surface finish. Mathematical model has been developed to predict the acceleration amplitude of vibration in terms of machining parameters such as helix angle of cutting tool, spindle speed, feed rate, and axial and radial depth of cut. Central composite rotatable second-order response surface methodology was employed to create a mathematical model, and the adequacy of the model was verified using analysis of variance. The experiments were conducted on aluminum Al 6063 by high-speed steel end mill cutter, and acceleration amplitude was measured using FFT analyzer. The direct and interaction effect of the machining parameter with vibration amplitude were analyzed, which helped to select process parameter in order to reduce vibration, which ensures quality of milling.  相似文献   

11.
To achieve high quality and precision of machining products, the machining error must be examined. The machining error, defined as the difference between designed surface and the actual tool, is generally caused by tool deflection and wear, thermal effects and machine tool errors. Among these error sources, tool deflection is usually known as the most significant factor. The tool deflection problem is analyzed using the instantaneous cutting forces on the cutting edge. This study presents a model of the machining error caused by tool deflection in the internal boring process. The machining error prediction model was described by the surface response method using overhang, feed per revolution and depth of cut as the factors for the analysis. The least square method revealed that overhang and depth of cut were significant factors within 90% confidence intervals. Analysis of variance (ANOVA) and residual analysis show that the second-order model is adequate.  相似文献   

12.
Silicon carbide (SiC) ceramic has been widely used in modern industry. However, the beneficial properties of SiC ceramic make machining difficult and costly by conventional machining methods. This paper proposes a new process of machining SiC ceramic using end electric discharge (ED) milling. The process is able to effectively machine a large surface area on SiC ceramic at low cost and no environmental pollution. The effects of emulsion concentration, emulsion flux, milling depth, copper electrode number, and copper electrode diameter on the process performance such as the material removal rate, electrode wear ratio, and surface roughness have been investigated. In addition, the microstructure of the machined surface is examined with a scanning electron microscope, and the material removal mechanism of SiC ceramic during end ED milling is obtained.  相似文献   

13.
Wire electrical discharge machining is a widely used process in manufacturing industries to machine complex profiles. The performance of any machining process is based on choosing the right combination of input parameters. Metal removal rate and surface roughness are the most important output parameters, which decide the performance of a machining process. The selection of optimal parameters in wire electrical discharge machining is difficult as it is a complex process and involves a large number of variables. The present work models the metal removal rate and the surface roughness in terms of the input variables using the response surface methodology and, consequently, the developed mathematical models are utilized for optimization. Since the influences of machining parameters on the metal removal rate and the surface roughness are opposite, the problem is formulated as a multiobjective optimization problem. Non-dominated sorting genetic algorithm is then applied to obtain the Pareto-optimal set of solutions.  相似文献   

14.
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine’s capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine’s potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.  相似文献   

15.
A crack-free surface can be finished on brittle materials by a specialized but traditional machining technique known as ductile-mode machining. In ductile-mode machining of brittle material, crack propagation is suppressed by selecting a suitable combination of tool and machining parameters leading to the removal of material through plastic deformation enabled by dislocation motion. In ductile-mode machining, the tool–workpiece interaction is of critical significance for the capability of the cutting process to finish a crack-free surface on a brittle material. This interaction is largely dictated by the cutting-edge radius of the tool when the undeformed chip thickness is comparable to the edge radius as is the case of ductile-mode machining. This paper presents the experimental results of ductile-mode milling of tungsten carbide to investigate the effect of cutting-edge radius on certain critical machining characteristics associated with the ductile–brittle transition specific to milling process of brittle material. The experimental results have established that an increase in the cutting-edge radius within a certain range increases the critical feed per edge leading to the improvement of material removal rate in ductile-mode milling. An increasingly negative effective rake angle is desired during milling with larger edge-radiused tool to suppress the crack propagation in the cutting zone to achieve ductile-mode machining. The results also identify the effect of the edge radius on certain other parameters such as critical specific cutting energy, plowing effect and subsurface damage depth to comprehend the ductile–brittle transition phenomenon in ductile-mode milling.  相似文献   

16.
Ultrasonic-assisted machining is a machining operation based on the intermittent cutting of material which is obtained through vibrations generated by an ultrasonic system. This method utilizes low-amplitude vibrations with high frequency to prevent continuous contact between a cutting tool and a workpiece. Hot machining is another method for machining materials which are difficult to cut. The basic principle of this method is that the surface of the workpiece is heated to a specific temperature below the recrystallization temperature of the material. This heating operation can be applied before or during the machining process. Both of these operations improve machining operations in terms of workpiece-cutting tool characteristics. In this study, a novel hybrid machining method called hot ultrasonic-assisted turning (HUAT) is proposed for the machinability of Hastelloy-X material. This new technique combines ultrasonic-assisted turning (UAT) and hot turning methods to take advantage of both machining methods in terms of machining characteristics, such as surface roughness, stable cutting depths, and cutting tool temperature. In order to observe the effect of the HUAT method, Hastelloy-X alloy was selected as the workpiece. Experiments on conventional turning (CT), UAT, and HUAT operations were carried out for Hastelloy-X alloy, changing the cutting speed and cutting tool overhang lengths. Chip morphology was also observed. In addition, modal and sound tests were performed to investigate the modal and stability characteristics of the machining. The analysis of variance (ANOVA) method was performed to find the effect of the cutting speed, tool overhang length, and machining techniques (CT, UAT, HUAT) on surface roughness, stable cutting depths, and cutting tool temperature. The results show both ultrasonic vibration and heat improve the machining of Hastelloy-X. A decrease in surface roughness and an increase in stable cutting depths were observed, and higher cutting tool temperatures were obtained in UAT and HUAT compared to CT. According to the ANOVA results, tool overhang length, cutting speed, and machining techniques were effective parameters for surface roughness and stable cutting depths at a 1% significance level (p ≤ 0.01). In addition, cutting speed and machining techniques have an influence on cutting tool temperature at a 1% significance level (p ≤ 0.01). During chip analysis, serrated chips were observed in UAT and HUAT.  相似文献   

17.
Silicon carbide (SiC) ceramic has been widely used in modern industry because of its superior mechanical properties, wear, and corrosion resistance even at elevated temperature. However, the manufacture of SiC ceramic is not an efficient process by conventional machining methods. This paper employs a steel-toothed wheel as the tool electrode to machine SiC ceramic using electric discharge milling. The process is able to effectively machine a large surface area on SiC ceramic. To further improve the process performance, three kinds of emulsion are proposed as the dielectric in this paper. The effects of dielectric, tool polarity, pulse duration, pulse interval, peak voltage, and peak current on the process performance such as the material removal rate (MRR) and surface roughness (SR) have been investigated. Furthermore, the microstructure of the machined surface is examined with a scanning electron microscope (SEM), an energy-dispersive spectrometer (EDS), and X-ray diffraction (XRD).  相似文献   

18.
In machining, coolants improve machinability, increase productivity by reducing tool wear and extend tool life. However, due to ecological and human health problems, manufacturing industries are now being forced to implement strategies to reduce the amount of cutting fluids used in their production lines. A trend that has emerged to solve these problems is machining without fluid – a method called dry machining – which has been made possible due to technological innovations. This paper presents an experimental investigation of the influence of tool geometry (radial rake angle and nose radius) and cutting conditions (cutting speed and feed rate) on machining performance in dry milling with four fluted solid TiAlN-coated carbide end mill cutters based on Taguchi’s experimental design method. The mathematical model, in terms of machining parameters, was developed for surface roughness prediction using response surface methodology. The optimization is then carried out with genetic algorithms using the surface roughness model developed and validated in this work. This methodology helps to determine the best possible tool geometry and cutting conditions for dry milling.  相似文献   

19.
Evaluation of the characteristics of a microelectrical discharge machining (Micro-EDM) process is challenging, because it involves complex, interrelated relationships so a proper modeling approach is necessary to clearly identify the crucial machining variables and their interrelationships in order to initiate more effective strategies to improve Micro-EDM qualities (electrode wear (EW), material removal rate (MRR) and overcut). This paper uses a response surface method (RSM) based on the central composite design (CCD) for Micro-EDM problems with four EDM variables (peak current, pulse on-time, pulse off-time and electrode rotation speed). Experimental results indicate that peak current is the EDM variable that most affects the Micro-EDM qualities for SK3 carbon tool steel while pulse off-time had a significant interaction with that. The results show that RSM based on the CCD could efficiently be applied for the modeling of Micro-EDM qualities (EW, MRR, and overcut), and it is an economical way to obtain the performance characteristics of Micro-EDM process parameters with the fewest experimental data.  相似文献   

20.
High-productivity machining processes cause tool and material defects and even damages in machine spindles. The onset of self-excited vibration, known as chatter, limits this high material removal rate. This chatter vibration refers to machining instability during cutting processes, which results in bifurcation behavior or nonlinear effect wherein the tool and the workpiece are not engaged with each other. In particular, bifurcation for low-radial immersion conditions can be easily promoted and identified. In this study, an experiment on an irregular milling tool as a variable helix and variable pitch geometry was conducted under a flexible workpiece condition. The bifurcation behavior from regenerative chatter was identified and quantified from displacement sensor and inductive sensor measurements. A series of cutting tests was used to measure the vibration signals, which were then analyzed based on the frequency spectrum, the one-per-revolution effect, and the Poincaré section. According to results, Hopf bifurcation and period-one bifurcation instabilities apparently occurred to validate chatter stability prediction through a semi-discretization method. However, period-doubling bifurcation was only determined during the unstable cutting of a uniform tool that was not in variable helix/pitch or an irregular milling tool. An irregular tool geometry caused the modulation of the regenerative effect to suppress chatter, and period-doubling instability could not be exhibited during cutting as a regular tool behavior. This period-one chatter instability of an irregular milling tool should be identified and avoided by practitioners to achieve high productivity in machining using the aforementioned irregular milling tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号