首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Experimental investigation into the effects of different pilot amounts of dimethyl ether (DME) on the performance and emission of a single-cylinder direct-injection DME engine is conducted. The results show that a DME engine can operate at a wider range of speeds and loads at quasi-homogenous charge compression ignition (QHCCI) mode. The brake thermal efficiency increases while the exhaust temperature decreases. NOx emission decreases by about 30%–50% although there is a slight increase in HC and CO emissions. NOx, HC and CO emissions increase with an increase in the amount of DME pilot. QHCCI is a good way to increase thermal efficiency and decrease NOx emission.  相似文献   

2.
Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NO x and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NO x emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions. __________ Translated from Chinese Internal Combustion Engine Engineering, 2007, 28(2): 19–23 [译自: 内燃机工程]  相似文献   

3.
A new combustion model diesel/methanol compound combustion (DMCC) is presented, in which methanol is injected into manifold and ignited by certain amount of diesel fuel. The results showed that DMCC remarkably decreased the emission of NOx and the smoke, but increased the emission of HC, CO and PM. However, HC, CO and NOx were dramatically decreased with a catalytic converter, and PM was also decreased compared with that of diesel engine. The testing results illustrated that, combined with oxidation catalyst converter, DMCC could improve engine emissions. __________ Translated from Transactions of CSICE, 2006, 24(5): 402–407 [译自: 内燃机学报]  相似文献   

4.
Emission characteristics of a turbocharged, intercooled, heavy-duty diesel engine operating on neat gas-to-liquids (GTL) and blends of GTL with conventional diesel were investigated and a comparison was made with those of diesel fuel. The results show that nitrogen oxides (NO x ), smoke, and particulate matter (PM) emissions can be decreased when operating on GTL and diesel-GTL blends. Engine emissions decrease with an increase of GTL fraction in the blends. Compared with diesel fuel, an engine operating on GTL can reduce NO x , PM, carbon monoxide (CO), and hydrocarbon (HC) by 23.7%, 27.6%, 16.6% and 12.9% in ECE R49 13-mode procedure, respectively. Engine speed and load have great influences on emissions when operating on diesel-GTL blends and diesel fuel in the turbocharged diesel engine. The study indicates that GTL is a promising alternative fuel for diesel engines to reduce emissions. Translated from Transactions of CSICE, 2006, 24(6): 489–493 [译自: 内燃机学报]  相似文献   

5.
This paper deals with the experimental study that aims to examine the effects of octane number of three different fuel oxygenates on exhaust emissions of a typical spark ignition engine. Three commonly used oxygenates, namely methyl tertiary butyl ether (MTBE), methanol, and ethanol, which were blended with a base unleaded fuel in three ratios (10, 15 and 20 vol%), were investigated. The engine emissions of CO, HC, and NOx were measured under a variety of engine operating conditions using an engine dynamometer set‐up. It is found that generally as the octane number of the fuel increases the CO and HC emissions decrease but the NOx emission increases for all three blends. Further, for the leaded fuel (RON of 92), as the speed of the engine increases the CO and NOx emissions decrease but the HC emission decreases. A similar trend was found for MTBE blends also. These emission results are presented in terms of octane number and their effects are discussed in this paper. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Dual-fuel compression ignition (CI) engine operation with hydrogen is a promising method of using hydrogen gas in CI engines via high-cetane pilot fuel ignition. However, hydrogen dual-fuel operation with neat pilot fuels typically produce: high NOx emissions; and high combustion chamber pressure rise rates (leading to increased “Diesel knock” tendencies). While water-in-fuel emulsions have been used during normal CI engine operation to cool the charge and slow combustion rates in an effort to reduce NOx emissions, these water-in-fuel emulsions have not been tested as pilot fuels during hydrogen dual-fuel combustion. In this work two water-in-biodiesel emulsions are tested as pilot fuels during hydrogen dual-fuel operation. Hydrogen dual-fuel operation generally produces at best comparable thermal efficiencies compared with normal CI engine operation, while the emulsified biodiesel pilot fuels generally increase thermal efficiencies when compared with the neat biodiesel pilot fuel during dual-fuel operation. There is also a clear reduction in NOx emissions with emulsified pilot fuel use compared with the neat pilot fuel. The thermal efficiency increase is more apparent at higher engine speeds, while the NOx reduction is more apparent at lower speeds. This is due to two conflicting effects (exclusive to emulsified pilot fuel) that occur in tandem. The first is the cooling effect of water vapourisation on the charge, while the second is the microexplosion phenomenon which enhances fuel-air mixing. The NOx emission reduction is due to the emulsified pilot fuel lowering pressure rise rates compared with the neat pilot fuel, while the efficiency increase is due to a more homogeneous charge resulting from the violent microexplosion of the emulsified pilot fuel. Smoke, CO, HC and CO2 emissions remain comparable to neat pilot fuel tests. Overall, emulsified pilot fuels can reduce NOx emissions and increase thermal efficiencies, however not at the same instance and under different operating conditions. The general trends of reduced power output, reduced CO2 and increased water vapour emission during hydrogen dual-fuel operation (with neat pilot fuels) are also maintained.  相似文献   

7.
Dimethyl ether (DME) and methanol are thought to be one of the most promising alternative fuels for IC engines. Meanwhile, previous investigations also have pointed out the good prospects for adopting DME and methanol in IC engines. The experiments in this paper were carried out at idle condition to investigate the effect of applying the methanol/DME blended fuel in a SI engine. The engine was modified to be fueled with the mixture of methanol and DME which were injected into the engine intake ports simultaneously. Various DME fractions were selected to investigate the effect of DME addition on engine performance. The experimental results showed that indicated thermal efficiency was increased by 25% and coefficient of cyclic variation in engine speed was decreased by 29.2% at the DME energy fraction of 85.2% in the total fuel. In addition, both flame development and propagation durations were shortened with the increase of DME enrichment level at idle condition. Meanwhile, the largest drop of HC emissions was nearly 50% compared with the original methanol engine at stoichiometric condition. However, CO and NOx emissions increase with the addition of DME.  相似文献   

8.
This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen and ignited by a pilot amount of diesel fuel in dual-fuel mode. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with charge dilution. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first with hydrogen-operation condition up to the maximum possible fuel-air equivalence ratio of 0.3. A maximum IMEP of 908 kPa and a thermal efficiency of about 42% were obtained. Equivalence ratio could not be further increased due to knocking of the engine. The emission of CO was only about 5 ppm, and that of HC was about 15 ppm. However, the NOx emissions were high, 100–200 ppm or more. The charge dilution by N2 was then performed to obtain lower NOx emissions. The 100% reduction of NOx was achieved. Due to the dilution by N2 gas, higher amount of energy could be supplied from hydrogen without knocking, and about 13% higher IMEP was produced than without charge dilution.  相似文献   

9.
Experiments on the effects of external and internal exhaust gas recirculation (EGR) on combustion and emission performance during a cold start process were investigated in a 135 single-cylinder DI diesel engine. Combustion was improved during the initial ignition cycles by introducing internal or external EGR. The addition of an appropriate amount of internal or external EGR can promote the combustion stability significantly. However, excessive amounts of external EGR could lead to extremely unstable combustion or even misfiring. An appropriate amount of internal or external EGR decreased smoke opacity effectively during a cold start. External EGR reduced NO x emissions effectively while internal EGR led to an increase in NO x emissions due to thermal effects. __________ Translated from Transactions of CSICE, 2007, 25(3): 193–201 [译自:内燃机学报]  相似文献   

10.
Dual-fuelling in compression–ignition (CI) engines is a mode of combustion where a small pilot injection of high-cetane fuel (i.e. diesel) ignites a premixed high-octane fuel (i.e. methane) and air mixture. This allows conventional CI engines to lower their emissions of smoke and nitrogen oxides (NOx)(NOx) while maintaining their high thermal efficiencies. However, poor ignitability of the main fuel–air charge results in increased emissions of unburnt hydrocarbons (HC) and carbon monoxide (CO). Conventional pilot fuels such as diesel and biodiesel (methyl esters transesterified from raw plant oil) have been researched extensively in prior work, showing that in terms of performance and emissions they perform fairly similarly. This is because the physical, chemical and combustion properties of various methyl esters are comparable to those of conventional diesel. In order to reduce these emissions of HC and CO, alternative pilot fuels need to be considered. As fuels employed during normal CI engine operation, both dimethyl ether (DME, a gaseous CI engine fuel) and water-in-fuel emulsions (conventional biodiesel mixed with varying concentrations of water) have shown that they reduce smoke and NOxNOx emissions significantly, while improving combustion quality. In this work, the performance of DME and water-in-biodiesel emulsions as pilot fuels was assessed. It was seen that the water-in-biodiesel emulsions did not perform as well as expected, as increased HC and CO emissions coupled with a mild change in NOxNOx levels was encountered (compared to conventional pilot fuel, in this case neat biodiesel). The emulsions performed very poorly as pilot fuels below a certain BMEP threshold. DME, while producing higher levels of HC and CO than neat biodiesel, managed to reduce NOxNOx significantly compared to neat biodiesel. Emissions of HC and CO, while higher than neat biodiesel, were not as high as levels seen with the emulsions. Thermal efficiency levels were generally maintained with the liquid pilot fuels, with the DME pilot producing comparatively lower levels.  相似文献   

11.
Cycle fuel energy distribution and combustion characteristics of early in-cylinder diesel homogenous charge compression ignition (HCCI) combustion organized by modulated multi-pulse injection modes are studied by the engine test. It is found that heat loss due to unburned fuel droplets and CO emission can be decreased effectively by injection mode regulation, and thermal efficiency can be potentially increased by 4%–12%. From the analyses of combustion process, it is also found that diesel HCCI combustion is a process with a finite reaction rate and is very sensitive to injection timing and injection mode. At injection timing of −90°CA ATDC, extra low NOx emissions can be obtained along with high thermal efficiency. __________ Translated from Transactions of CSICE, 2006, 24(6): 385–393 [译自: 内燃机学报]  相似文献   

12.
《能源学会志》2014,87(2):102-113
In this study, combustion and emissions characteristics of a turbocharged compression ignition engine fueled with dimethyl ether (DME) and biodiesel blends are experimentally investigated. The effects of nozzle parameter on combustion and emissions are evaluated. The result shows that with the increase of DME proportion, ignition delay, the peak in-cylinder pressure, peak heat-release rate, peak in-cylinder temperature decrease, and their phases retard. Compared to the nozzle 6 × 0.40 mm, the peak cylinder pressure and peak heat-release rate are higher with nozzle 6 × 0.35 mm, and their phases are advanced. Increased DME proportion in fuel blends causes greater differences. Compared to biodiesel, NOx emissions of blends significantly decrease; HC emissions and CO emissions increase slightly. DME–biodiesel blends can be used as an alternative in a turbocharged CI engine. To obtain low NOx emissions and a soft engine operation, for high DME proportion blended fuels, nozzle of 6 × 0.40 mm adopted.  相似文献   

13.
Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. As an alternative, biodegradable, and renewable fuel, ethanol is receiving increasing attention. Therefore, in this study, influence of injection timing on the exhaust emission of a single cylinder, four stroke, direct injection, naturally aspirated diesel engine has been experimentally investigated using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine has an original injection timing 27° CA BTDC. The tests were performed at five different injection timings (21°, 24°, 27°, 30°, and 33° CA BTDC) by changing the thickness of advance shim. The experimental test results showed that NOx and CO2 emissions increased as CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing, at the retarded injection timings (21° and 24° CA BTDC), NOx and CO2 emissions increased, and unburned HC and CO emissions decreased for all test conditions. On the other hand, with the advanced injection timings (30° and 33° CA BTDC), HC and CO emissions diminished, and NOx and CO2 emissions boosted for all test conditions.  相似文献   

14.
This article is a condensed overview of a dimethyl ether (DME) fuel application for a compression ignition diesel engine. In this review article, the spray, atomization, combustion and exhaust emissions characteristics from a DME-fueled engine are described, as well as the fundamental fuel properties including the vapor pressure, kinematic viscosity, cetane number, and the bulk modulus. DME fuel exists as gas phase at atmospheric state and it must be pressurized to supply the liquid DME to fuel injection system. In addition, DME-fueled engine needs the modification of fuel supply and injection system because the low viscosity of DME caused the leakage. Different fuel properties such as low density, viscosity and higher vapor pressure compared to diesel fuel induced the shorter spray tip penetration, wider cone angle, and smaller droplet size than diesel fuel. The ignition of DME fuel in combustion chamber starts in advance compared to diesel or biodiesel fueled compression ignition engine due to higher cetane number than diesel and biodiesel fuels. In addition, DME combustion is soot-free since it has no carbon–carbon bonds, and has lower HC and CO emissions than that of diesel combustion. The NOx emission from DME-fueled combustion can be reduced by the application of EGR (exhaust gas recirculation). This article also describes various technologies to reduce NOx emission from DME-fueled engines, such as the multiple injection strategy and premixed combustion. Finally, the development trends of DME-fueled vehicle are described with various experimental results and discussion for fuel properties, spray atomization characteristics, combustion performance, and exhaust emissions characteristics of DME fuel.  相似文献   

15.
An experimental study of a turbocharged diesel engine operating on dimethyl ether (DME) was conducted. The combustion and emission characteristics of the DME engine were investigated. The results show that the maximum torque and power of DME are greater than those of diesel, particularly at low speeds; the brake specific fuel consumption of DME is lower than that of diesel at low and middle engine speeds, and the injection delay of DME is longer than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of the DME engine are lower than those of diesel. The combustion velocity of DME is faster than that of diesel, resulting in a shorter combustion duration of DME. Compared with the diesel engine, NO x emission of the DME engine is reduced by 41.6% on ESC data. In addition, the DME engine is smoke free at any operating condition. __________ Translated from Transactions of CSICE, 2006, 24(3): 193–199 [译自: 内燃机学报]  相似文献   

16.
Biogas has been a promising alternative fuel for IC engines. However, its CO2 content reduces calorific value and ignitability. The CO2 fraction of raw biogas can be separated out by various techniques, which are collectively called methane enrichment. The present study explores the effect of methane enrichment on the output parameters of a Homogeneous Charge Compression Ignition (HCCI) engine. A single cylinder CI engine is altered for this purpose. Biogas (CH4 + CO2) is supplied along with air. Diethyl Ether (DEE) is used as the secondary fuel to initiate auto-ignition. The effects of injecting DEE at the inlet port and upstream in the intake manifold are also compared. Performance, emission and combustion characteristics such as brake thermal efficiency, equivalence ratio, HC, CO, CO2, NOx and smoke emissions, start and duration of combustion, in-cylinder pressure and maximum heat release rate are compared for operation with raw biogas (50% methane) and methane enriched biogas (100% methane) for various biogas flow rates and engine torques. Results show that methane enrichment enhances brake thermal efficiency by up to 2% compared to raw biogas. Methane enrichment advances and speeds up combustion. HC, CO and CO2 emissions, maximum cylinder pressure and maximum heat release rate are also improved with methane enrichment. Ultra-low NOx and smoke emissions can be obtained using raw biogas as well as methane enriched biogas. Low biogas flow rates provide better brake thermal efficiency and HC emissions. Manifold injection of DEE enhances brake thermal efficiency by up to 2% compared to port injection by virtue of greater mixture homogeneity.  相似文献   

17.
An experimental investigation on the influence of different hydrogen fractions and EGR rates on the performance and emissions of a spark-ignition engine was conducted. The results show that large EGR introduction decreases the engine power output. However, hydrogen addition can increase the power output at large EGR operation. Effective thermal efficiency shows an increasing trend at small EGR rate and a decreasing trend with further increase of EGR rate. In the case of small EGR rate, effective thermal efficiency is decreased with the increase of hydrogen fraction; while in the case of large EGR rate, thermal efficiency is increased with increasing of hydrogen fraction. For a specified hydrogen fraction, NOx concentration is decreased with the increase of EGR rate and this effectiveness becomes more obviously at high hydrogen fraction. HC emission is increased with the increase of EGR rate and it decreases with the increase of hydrogen fraction. CO and CO2 emissions show little variations with EGR rate, but they decrease with the increase of hydrogen fraction. The study shows that natural gas–hydrogen blend combining with EGR can realize high-efficiency and low-emission spark-ignition engine.  相似文献   

18.
The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120–150 °C) and at different air–fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air–fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NOx emissions are lower than 10 ppm however HC and CO emissions are higher.  相似文献   

19.
Transport vehicles greatly pollute the environment through emissions such as CO, CO2, NOx, SOx, unburnt or partially burnt HC and particulate emissions. Fossil fuels are the chief contributors to urban air pollution and major source of green house gases (GHGs) and considered to be the prime cause behind the global climate change. Biofuels are renewable, can supplement fossil fuels, reduce GHGs and mitigate their adverse effects on the climate resulting from global warming. This paper presents the results of performance and emission analyses carried out in an unmodified diesel engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Engine tests have been conducted to get the comparative measures of brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC) and emissions such as CO, CO2, HC, NOx to evaluate the behaviour of PPME and diesel in varying proportions. The results reveal that blends of PPME with diesel up to 40% by volume (B40) provide better engine performance (BSFC and BSEC) and improved emission characteristics.  相似文献   

20.
The aim of this study is to investigate the suitability of isobutanol–diesel fuel blends as an alternative fuel for the diesel engine, and experimentally determine their effects on the engine performance and exhaust emissions, namely break power, break specific fuel consumption (BSFC), break thermal efficiency (BTE) and emissions of CO, HC and NOx. For this purpose, four different isobutanol–diesel fuel blends containing 5, 10, 15 and 20% isobutanol were prepared in volume basis and tested in a naturally aspirated four stroke direct injection diesel engine at full -load conditions at the speeds between 1200 and 2800 rpm with intervals of 200 rpm. The results obtained with the blends were compared to those with the diesel fuel as baseline. The test results indicate that the break power slightly decreases with the blends containing up to 10% isobutanol, whereas it significantly decreases with the blends containing 15 and 20% isobutanol. There is an increase in the BSFC in proportional to the isobutanol content in the blends. Although diesel fuel yields the highest BTE, the blend containing 10% isobutanol results in a slight improvement in BTE at high engine speeds. The results also reveal that, compared to diesel fuel, CO and NOx emissions decrease with the use of the blends, while HC emissions increase considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号