首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of tunnel blast excavation on the surrounding rock mass and the lining systems of adjacent existing tunnels are comprehensively studied for the Damaoshan highway tunnel project as a case study. The damage of the surrounding rock and the lining system under different blast loads are analyzed by field tests and numerical simulations. It is observed that the rock damage extent around the tunnels linearly increases with the peak particle velocity (PPV) of the existing tunnel. A feasible PPV-based damage control method is then proposed for different portions of the tunnels. For the Damaoshan tunnel project, a PPV threshold of 0.22 m/s in the adjacent existing tunnel is prescribed to limit the damage extent to approximately 1.6 m at the tunnel exit and entrance portions. Furthermore, the PPV criteria for the other portions are also determined accordingly. It is also shown that no failure occurs in the linings or at the rock–lining interfaces if the PPV is less than 0.30 m/s. The control method and the threshold PPV proposed in this study have been successfully applied to restrict blast-induced damage during the new tunnel excavation of the Damaoshan tunnel project.  相似文献   

2.
A numerical simulation method is proposed to evaluate the underground tunnel safety against explosion in adjacent tunnels. The dynamic constitutive relation used for rock material in the present study consists of a continuum damage model with the damage scalar depending on an equivalent tensile strain, a modified piecewise linear Drucker-Prager strength model allowing for the material strength degradation with damage, and a modified linear equation of state. The numerical model is calibrated by simulation of independent field explosion tests. Parametric study regarding the effect of the adjacent tunnel distance on the dynamic responses of underground tunnel is carried out. Failure zone around the explosion tunnel, and stress, strain and velocity on the adjacent tunnel wall are calculated. Safe separation distance between the adjacent tunnels is predicted and compared with empirical result.  相似文献   

3.
A numerical simulation method is proposed to evaluate the underground tunnel safety against explosion in adjacent tunnels. The dynamic constitutive relation used for rock material in the present study consists of a continuum damage model with the damage scalar depending on an equivalent tensile strain, a modified piecewise linear Drucker-Prager strength model allowing for the material strength degradation with damage, and a modified linear equation of state. The numerical model is calibrated by simulation of independent field explosion tests. Parametric study regarding the effect of the adjacent tunnel distance on the dynamic responses of underground tunnel is carried out. Failure zone around the explosion tunnel, and stress, strain and velocity on the adjacent tunnel wall are calculated. Safe separation distance between the adjacent tunnels is predicted and compared with empirical result.  相似文献   

4.

In practice, a damage zone is generally formed after tunnel excavation in jointed rock mass. This damage zone is closely related to rock mass properties and requires careful examination in order for cost effective supporting designs. In this research, a synthetic rock mass (SRM) numerical method is applied for characterizations of the jointed rock mass and excavation damage zone (EDZ) near underground tunnels in 3D. The SRM model consists of bonded particles and simulates deformation and crack propagation of the rock mass through interactions between these particles. The effects of joint stiffness and distribution on the rock mass properties are systematically examined by comparing the numerical data with an empirical geological strength index (GSI) system and an associated Hoek-Brown strength criterion. The numerical results suggest that rock mass properties are comparable to the empirical GSI/Hoek-Brown system only when inclined joints are simulated in the rock mass subjected to axial loading. The rock mass is strengthened and the empirical GSI/Hoek-Brown characterization becomes inappropriate when the joints are less favorable to shear sliding. The SRM method is then applied for characterizations of tunnel EDZ. It appears that the depth and location of the EDZ are a function of the tunnel orientation, joints, and in situ stresses. The EDZ depth is expected to be higher when inclined joints are simulated. The EDZ area is reduced when the joints in the rock mass are horizontally and vertically distributed.

  相似文献   

5.
 采用钻爆法修建海底隧道必须采取有效措施预防塌方、涌水、突泥等地质灾害,海底隧道钻爆法施工时如何安全穿越断层破碎带是工程设计与施工的技术难点。结合厦门跨海峡隧道围岩的特点,研究钻爆法穿越断层破碎带的注浆加固、防排水技术,提出不同围岩条件下的隧道防排水和注浆设计方案。并根据实验室三轴试验结果得到强风化花岗岩渗透系数以及反演的围岩力学参数,分析风化槽隧道衬砌的外水压力分布特点和量值。研究成果为衬砌结构设计以及国内同类型隧道的衬砌防排水和衬砌支护技术设计提供可靠指导。  相似文献   

6.
Effect of blast-induced vibration on existing tunnels in soft rocks   总被引:2,自引:0,他引:2  
In urban areas, it is common to excavate rocks adjacent to existing tunnels. Excavation of rock ground is commonly carried out using the drill and blast method which may cause blast-induced damages to the existing tunnels. In this case securing the safety of the existing tunnels is one of the main issues, and the possible effects need to be evaluated. Empirical approaches using the velocity formulae are frequently adopted to evaluate the influence of the blast-induced vibration. This method cannot, however, appropriately consider various influencing factors on vibration and basically needs to be validated using the trial blast in the field. In this paper, attempts to identify the effect of blast-induced vibration on the immediately adjacent tunnels are made, and a preliminary guideline for evaluating the protection zone for the blast vibration is proposed. A numerical method is adopted for the dynamic modeling of a tunnel in soft rock. A two-dimensional blast load is evaluated by modifying the detonation pressure formula based on the results of field tests. Tunnel behavior due to the blast-induced vibration is investigated in terms of particle velocity, displacement, and stress of the linings. A guideline for the blast protection zone is proposed based on a parametric study on blast location, tunnel depth, and the amount of explosives.  相似文献   

7.
The excavation impact (e.g. due to blasting, TBM drilling, etc.) induces an excavation damaged or disturbed zone around a tunnel. In this regard, in drill and blast method, the damage to the rock mass is more significant. In this zone, the stiffness and strength parameters of the surrounding rock mass are different. The real effect of a damage zone developed by an excavation impact around a tunnel, and its influence on the overall response of the tunnel is of interest to be quantified. In this paper, a fully analytical solution is proposed, for stresses and displacements around a tunnel, excavated in an elastic–brittle–plastic rock material compatible with linear Mohr–Coulomb criterion or a nonlinear Hoek–Brown failure criterion considering the effect of the damaged zone induced by the excavation impact. The initial stress state is assumed to be hydrostatic, and the damaged zone is assumed to have a cylindrical shape with varied parameters; thus, the problem is considered axial-symmetric. The proposed solution is used to explain the behavior of tunnels under different damage conditions. Illustrative examples are given to demonstrate the performance of the proposed method, and also to examine the effect of the damaged zone induced by the excavation impact. The results obtained by the proposed solution indicate that, the effects of the alteration of rock mass properties in the damaged zone may be considerable.  相似文献   

8.
锚固洞室在顶爆作用下破坏形式及破坏过程研究   总被引:2,自引:0,他引:2  
利用抗爆模型试验和数值分析方法,研究锚固洞室在顶爆作用下的破坏形式及破坏过程。根据锚固洞室破坏模型试验,发现锚固洞室主要有:受拉破坏、剪切破坏、受压破坏和压剪破坏4种破坏形态。通过分析试验解剖图和应力波传播规律发现:爆炸应力波作用下,锚固洞室首先在拱顶锚固区发生"层裂"现象,在自由面附近有类似半椭圆拱岩石介质脱落;同时两侧容易形成"八"字型剪切裂纹,随着爆炸荷载强度增加,如果锚杆加固较弱会在洞顶产生局部坍塌,一旦锚杆加固较强就会发生从爆心至洞室整体坍塌。最后利用数值分析方法分析了洞室受力情况和塑性区发展过程,进一步探讨了锚固洞室在顶爆作用下破坏形式和破坏过程。  相似文献   

9.
通过对汶川地震公路隧道震害调查资料的统计分析,对隧道洞口结构进行了震害分析,结果表明:洞外结构受次生灾害影响较大,地震惯性力影响明显;硬岩洞口段隧道结构基本无破坏,软岩洞口段隧道结构震害较严重。通过三维有限差分数值模拟计算和现场典型震害分析,研究了公路隧道洞口结构的震害机理。探明了洞外结构震害机理,即洞外结构受次生灾害影响较大,震害的主要原因是地震惯性力,洞门墙结构和基础设计不合理以及隧道洞口所处位置也是影响洞外结构震害的重要因素。探明了洞口段隧道结构震害机理,即正穿坡面洞口段隧道结构存在软硬围岩交界面时,其附近软岩内隧道结构受较大强制位移作用;正穿坡面洞口段隧道结构覆盖层为软岩时,震害的主要因素是地震惯性力。研究成果对公路隧道洞口结构的抗减震技术有着重要的意义。  相似文献   

10.
The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (Vmax) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (Vcr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45–50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.  相似文献   

11.
Passenger and vehicle adits and ventilation shafts are commonly used for emergency access and ventilation in long tunnels. Increasing support load and additional tunnel deformation may endanger tunnel stability during construction in the intersection of the access and main tunnels. To understand the mechanical behavior of rock masses in the intersection area, 75 cases of 3D numerical analysis were conducted. These analyses were conducted under various tunneling conditions including rock strength, rock mass rating, overburden depth, and intersection angle. Following analysis results, a criterion for assessing the effect of intersection angles on tunnel behavior has been established, and three categories of support design suggestions for different geological conditions have also been proposed.  相似文献   

12.
为确保隧道在循环爆破荷载作用下的使用寿命和稳定性能,提出了基于爆破振动信号分析隧道围岩结构爆破累积损伤效应的新方法。依据监测试验获取的振速时程曲线,采用HHT理论将其变换为瞬时能量谱,对比爆破振动信号波形面积方法,针对质点振动能量分析隧道围岩结构物理力学性质的强弱效应,同时应用LS-DYNA数值软件的重启动命令,通过相同节点2次爆破X方向振速时程曲线验证新方法的准确性。研究结果表明:隧道DK497+286、DK497+291、DK497+296里程点3个方向振动能量均呈现下降变化趋势,说明爆破振动累积荷载对隧道监测点处围岩结构产生了破坏作用,并且垂直方向受爆破累积损伤最为严重,因此,需要根据围岩等级和在围岩等级改变处50 m范围内增加支护强度,保证隧道围岩结构安全。  相似文献   

13.
锦屏二级水电站1#引水隧洞岩爆洞段数值分析   总被引:1,自引:0,他引:1  
以锦屏二级水电站1#引水隧洞强岩爆洞段为例,运用RFPA对隧洞上半断面开挖进行数值分析,通过对隧洞破坏模式及其围岩的应力分析,在强岩爆洞段上半断面开挖过程中,围岩首先在边墙附近出现破坏,然后不断向拱肩方向扩展,即应力首先在洞壁附近产生应力集中,导致围岩产生损伤,随着损伤范围的扩大,高应力场向远离洞壁的方向发展,同时洞壁...  相似文献   

14.
数值方法确定海底隧道最小岩石覆盖厚度研究   总被引:11,自引:0,他引:11       下载免费PDF全文
目前国内正在修建或拟修建多条海底隧道,其中最小岩石覆盖厚度直接制约着海底隧道的安全和造价。本文根据国内外有关文献资料,探讨了利用数值方法确定海底隧道最小岩石覆盖厚度的方法,应用断裂损伤有限元和国际通用数值分析软件,根据隧道在同一剖面处不同底板线位置,隧道上方同一个点的位移收敛情况,建立了确定海底隧道最小覆盖厚度的位移收敛法。通过对国内2条海底隧道开展的研究,其中一条已开始施工,总结出了数值方法确定最小岩石覆盖厚度的思路和过程。为定量确定海底隧道最小岩石覆盖厚度建立了数值分析基础,最后应用数值方法确定某海底隧道最小岩石覆盖厚度。  相似文献   

15.
内源爆炸荷载作用下隧道的动力响应,经常被简化为以爆源为中心的二维平面应变问题,其实际上是一个三维岩土工程问题。为评价隧道爆源及周围区域的爆炸破坏,采用Laplace和Fourier变换,提出一种在内源爆炸荷载作用下,饱和土体中圆形衬砌隧道的瞬态响应精确解答。基于Biot波动理论,将周围土体和衬砌结构分别看成饱和两相介质和弹性介质,推求了Laplace和Fourier变换域内爆炸荷载作用下衬砌和周围饱和土体的动力响应解析解。利用Laplace和Fourier反变换的数值方法,进行了爆炸荷载作用下衬砌和周围土体的动力响应数值分析。结果表明:与简化的二维平面应变模型相比,基于三维模型得到的切向应力、径向位移和孔隙水压力较小;隧道的动力响应随时间而迅速减小,并随着与爆源距离的增加,而在径向和轴向上呈指数衰减。  相似文献   

16.
Groundwater inflow into tunnels can constitute a potential hazard and also is an important factor influencing the speed of tunnel excavation. In this paper the results of numerical modelling are presented to investigate the groundwater flow and the distribution of the pore pressure around tunnels. Two types of tunnels, double-arch tunnel and twin-tube tunnel, were studied. Potential leakage places are identified for the two types of tunnels. The most permeable place in the double-arch tunnel is at the contact interface between the middle wall and the overlying rock. The results of numerical modelling are compared with field observations in the case studies. Based on the results of numerical modelling and the field investigations, an innovative water-gathering system for reducing water leakage was proposed and applied in some tunnels on ChangJi Expressway in China. The water-gathering system can be quickly glued to the rock surface and easily installed for tunnelling. It can be applied in tunnels where water-bearing fractures are well-developed in the rock mass.  相似文献   

17.
深埋隧道软弱围岩支护体系受力特征的试验研究   总被引:5,自引:1,他引:4  
 软弱围岩由于强度低、稳定性差、变形持续时间长等特点,在隧道施工中常引起大变形、崩塌等破坏现象,导致初支结构强烈变形甚至破坏,严重影响隧道施工和安全,是隧道建设中遇到的主要难题之一。通过对贵阳-广州铁路天平山隧道试验段锚杆轴力、围岩压力及钢架应力的监测,分析各支护构件的受力特征。研究结果表明:对于初期变形速率较大的软弱围岩,锚杆轴力多呈中间大、两端小的分布型式,且轴力变化历时长,不易稳定;在同等地质软弱围岩条件下,型钢钢架的围岩压力比格栅钢架增大70%~90%,型钢钢架的应力分布较均匀,支护效果要优于格栅钢架。  相似文献   

18.
 针对复杂应力环境三向应力状态下地下洞室围岩破坏条件和破裂机制,采用统计损伤理论和数值模拟方法,建立三维非均匀性地质模型,考虑应力的三维效应,引入强度折减法,一方面在保持模型边界条件的同时实现洞室围岩的逐步破坏,另一方面以此定量评价不同应力场中洞室安全稳定状况,探讨不同侧压力系数和轴向应力条件下洞室围岩破坏模式,探究中间主应力对洞室稳定性的影响以及深部岩体分区破裂化现象产生条件和破裂规律等。结果表明,侧压力系数影响洞室围岩初始破裂形成部位和发展趋势;不同的轴向应力使得洞室围岩破裂区域和范围显著不同,在不同的侧压力系数条件下,轴向应力影响洞室稳定的规律存在差异;不同方向中间主应力对洞室围岩安全稳定状况的影响是不同的;当洞室轴线方向与最大水平应力方向平行时,较大的轴向应力会使洞室围岩产生分区破裂化现象,围岩破坏的区域也是拉应变集中的区域等。这些结果对进一步揭示地下洞室围岩非线性变形破坏行为,评价岩土工程安全稳定性,采取合理的支护措施等均具有重要意义。  相似文献   

19.
目前大多数隧道采用的是爆破掘进,炸药爆炸后的冲击应力会对隧道围岩造成不同程度的损伤。隧道围岩的损伤积累会降低围岩强度进而会影响岩体稳定性。岩石的破坏过程在微观上是内部缺陷微裂隙发展、传播、贯通,但岩石的内部微裂隙损伤难于直观观测。笔者通过室内岩石三轴压缩破坏试验和声发射特征试验所获得岩石加载过程的特征应力点判断岩石内部微裂隙发展阶段。特征应力点有裂隙初始应力—原岩损伤强度、爆破应力—凯塞点强度、裂隙贯通应力(长期强度)—原岩强度、抗压峰值强度。基于对围岩破坏过程的特征应力点的研究,提出了围岩爆破前后的损伤比例公式,量化了隧道爆破后围岩相对于原岩的损伤程度。  相似文献   

20.
The damage prediction of rock mass under blast loads induced by accidental explosions, rock bursts or weapon attacks is crucial in rock engineering. In this paper, parametric studies are conducted to evaluate the effect of loading density, rock mass rating (RMR) and weight of charge on the rock mass damage induced by underground explosions. The numerical simulations are carried out based on the transient dynamic finite element program ANSYS-LSDYNA. The numerical model was calibrated against the data obtained from a field blast test. A fully coupled numerical analysis, incorporating the explosion process, has been performed, where the large deformation zone near the charge is solved by the Arbitrary Lagrange–Euler (ALE) method. The deformable modulus and compressive strength of rock mass of granite are estimated by the RMR system. The peak particle velocity (PPV) damage criterion and the plastic strain criterion were adopted to study the damage zone around the charge hole, and an empirical formula considering the effects of loading density, RMR and weight of charge was obtained to estimate the damage zone in granite based on the numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号