首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase equilibria of the La2O3-SrO-CuO system have been determined at 950°C and 10 kbar (1 GPa). Stable phases at the apices of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2CuO4 in the LaO1.5-CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO-SrO binary. The La2-xSr x CuO4-δ solid solution is stable where 0.0 ≤ x ≤ 1.3, the La2-xSr1+xCu2O6+δ solid solution is stable where 0.0 ≤ x ≤ 0.2, the La8-xSr x Cu8O20-δ solid solution is stable where 1.3 ≤ x ≤ 2.7, the La x Sr14-x-Cu24O41 solid solution is stable where 0 ≤ x ≤ 6, and the La1+xSr2-xCu2O5.5+δ phase is stable where 0.04 ≤ x ≤ 0.16. The La2O3-SrO-CuO phase diagram at 950°C and 10 kbar is almost identical to that determined by other authors at 950°C and 1 atm, in terms of phase stability and solid-solution ranges.  相似文献   

2.
The phase relations in the pseudo-ternary system La2O3–SrO–Fe2O3 have been investigated in air. Isothermal sections at 1100° and 1300°C are presented based on X-ray diffraction and thermal analysis of annealed samples. Extended solid solubility was observed for the compounds Sr n +1− v La v Fe n O3 n +1−δ ( n =1, 2, 3, and ∞) and Sr1− x La x Fe12O19, while only limited solubility of La in Sr4− z La z Fe6O13±δ was observed. At high Fe2O3 content, a liquid with low La2O3 content was stable at 1300°C.  相似文献   

3.
La1− y Sr y Fe1− x Al x O3−δ perovskites were studied as potential materials for solid-oxide fuel cell (SOFC) cathodes. The phase relations in the LaFeO3–SrFeO3−δ–LaAlO3 system were investigated by X-ray powder diffraction analysis. The defect structure of the La1− y Sr y Fe1− x Al x O3−δ perovskites was investigated by Mössbauer spectroscopy and weight-loss analysis. Relations between the nonstoichiometry and the conductivity of the La1− y Sr y Fe1− x Al x O3−δ perovskites were investigated. The incorporation of aluminum ( x ) into LaFe1− x AlxO3 was found to have no influence on the defect structure but to decrease the conductivity. The incorporation of strontium ( y ) into La1− y Sr y Fe1− x Al x O3−δ promotes the formation of anion vacancies and Fe4+ that lead to higher conductivity.  相似文献   

4.
The thermodynamic data for the Y2O3–BaO–Cu2O–CuO quaternary system were optimized from measured thermodynamic data. A two-sublattice model for ionic solution was used to express the Gibbs free energy of the liquid phase, and a two-sublattice regular solution model was used for the nonstoichiometric YBa2Cu3O6+δ superconducting compound. The optimized thermodynamic data were used to calculate the phase diagrams of the Cu2O–CuO binary system and the CuO x –Y2Cu2O5 and CuO x –BaCuO2 quasi-binary systems. The results were in good agreement with reported measured data. The liquidus projection and isothermal and vertical sections of the Y2O3–BaO-CuO x quasi-ternary system were calculated. The effect of oxygen pressure on some reaction temperatures was predicted by calculating them at various oxygen pressures, and the oxygen contents (6 +δ) in YBa2Cu3O6+δ were calculated at various temperatures and oxygen pressures. The results were compared with experimental data.  相似文献   

5.
Crystal chemistry and subsolidus phase equilibrium studies of the Ba-Nd-Cu-O system near the CuO and Nd2O3 corners have been carried cut at 950°C in air. Two solid-solution series have been identified in the Ba-Nd-Cu-O system. The first series involves the high- T c superconductor phase, and has the formula Ba2–xNd1+xCu3O6+z, where × < ≅ 0.7. At the ideal compound stoichiometry of Ba2NdCu3O6+z, the transformation from the high- T c orthorhombic to tetragonal phase occurs at 550°–575°C in air. This temperature varies as a function of composition, and at x ≅ 0.2 to 0.3 it occurs at 950°C. The second solid solution is the non-superconducting "brown phase" represented by Ba2+2x-Nd4–2xCu2–xO10–2z 0 ≤ x ≤ 0.1. Preliminary phase diagrams of the BaO–Nd2O3 and Nd2O3–CuOx systems are also presented. Standard X-ray diffraction patterns of BaNd2–CuO5 and (Nd1.9Ca0.1)CuO4–z are provided.  相似文献   

6.
Bi2Sr2Ca2Cu2O8±δ-type compound thick films were exposed to oxygen-argon-gas mixtures (1% to 20% oxygen gas) at elevated pressures (up to 207 MPa) and temperatures (500° to 940°C) for times ranging from 5 to 96 h. At a sufficiently high oxygen fugacity and temperature, Bi2Sr2Ca1Cu2O8±δ decomposed via a solid-state reaction. Room-temperature X-ray diffractometry and electron probe microanalysis of decomposed films revealed the presence of Bi2(Sr,Ca)2-Cu1O6±θ ro-type compound, Bi2Sr2,Ca1O8±δ-type compound, and CuO. Bi2Sr2Ca1Cu2O8±δ decomposition was accompanied by a modest weight gain, which was consistent with an oxidation reaction. The solid-state decomposition reaction could be reversed by heat treatment of decomposed films at 860°C in pure, flowing oxygen at ambient pressure.  相似文献   

7.
The stability of the (Bi,Pb)2Sr2Ca2Cu3O10±δ-type compound has been evaluated under conditions of elevated temperature (500°-860°C) and elevated oxygen fugacity (i.e., in O2/Ar gas mixtures containing ≤120% O2, at total pressures of 5207 MPa). At sufficiently high oxygen fugacities and temperatures, the (Bi,Pb)2Sr2Ca2Cu3O10±δ-type compound transformed into a mixture of a strontium-rich (Bi,Pb)1-(Sr,Ca,Cu)2Oy-type compound, a calcium-rich (Bi,Pb)2-(Sr,Ca,Cu)2Oy-type compound, CuO, and a small amount of (Sr,Ca)O. The decomposition of the (Bi,Pb)2Sr2Ca2-Cu3O10±δ-type compound was accompanied by a 2%-3% weight gain, which was consistent with an oxidation reaction. The conditions of oxygen fugacity and temperature leading to decomposition, and the resulting decomposition products, are compared for the (Bi,Pb)2Sr2Ca2Cu2O10±δ-type and Bi2Sr2Ca1Cu2O8±Ψ-type compounds.  相似文献   

8.
Subsolidus phase relations in the La2O3–BaO–CuO system were studied at 950°C. Three previously reported binary compounds exist (La2CuO4, BaLa2O4, and BaCuO2) and five previously reported ternary phases occur (La2-xBaxCuO4-(x/2)+δ, La4-2xBa2+2xCu2-xO10-2x, La2-xBa1+xCu2O6-(x-2), La3-xBa3+xCu6O14±δ, and La4BaCu5O13+δ). Of the seven phases in the diagram, all but BaLa2O4, BaCuO2, and La4BaCu5O13+δ were shown to exhibit significant ranges of solubility. The diagram is important in that both >30 K (La2-xBaxCuO4-(x/2)+δ) and >90 K (La3-xBa3+xCu6O14+δ, x=1) superconductors occur.  相似文献   

9.
Phase equilibria in the CuO-rich (≥33% CuO) portion of the SrO–CaO–CuO system have been determined at 950°C in 1 atm of pure oxygen and at 10 kbar (1 bar = 105 Pa). Three solid-solution series occur under these conditions. There is a complete solid solution between the Ca2CuO3 and Sr2CuO3 endmembers at both 1 atm and 10 kbar, as has been previously noted in experiments conducted in air. Another solid-solution series extends continuously between SrCuO2 and (Sr0.38Ca0.62)CuO2 in 1 atm of oxygen, but is limited to between SrCuO2 and (Sr0.64Ca0.36)CuO2 at 10 kbar. At 10 kbar, more Ca-rich phases in this solid-solution series are not stable, but (Sr0.3Ca0.7)CuO2 and (Sr0.1–0.16Ca0.9–0.84)CuO2 are stable at 1 atm. The third solid-solution series ranges between Srl4Cu24O38 and (Sr0.41CaO.59)14-Cu24O38 in 1 atm of oxygen; the Ca-rich limit of this solid solution changes only slightly to (Sr0.39Ca0.61)14Cu24O38 at 10 kbar.  相似文献   

10.
The microstructural and compositional evolution during initial annealing of a superconducting (Bi,Pb)2Sr2Ca2Cu3O10+δ/Ag tape is studied using quantitative transmission electron microscopy. Special attention is devoted to the occurrence of Pb-rich liquids, which are crucial for the Bi2Sr2CaCu2O8+δ to (Bi,Pb)2Sr2Ca2Cu3O10+δ transformation. Ca and/or Pb-rich (Bi,Pb)2Sr2CaCu2O8+δ grains dissolve into a liquid, which reacts with Ca-rich phases to increase the liquid's Ca-content. This leads to (Bi,Pb)2Sr2Ca2Cu3O10+δ formation. Apparently, a Ca/Sr ratio of around 1 is sufficient to keep (Bi,Pb)2Sr2Ca2Cu3O10+δ nucleation going. It is confirmed that Ag particles are transported from the Ag-sheath into the oxide core by the liquid and not by mechanical treatment of the tape.  相似文献   

11.
The ternary system SrO-CeO2-TiO2 was investigated using X-ray diffractometry. The formation of a new compound, Sr2Ce2Ti5O16, was established, and its compatibilities with SrO, SrCeO3, and SrTiO3 were studied. The results revealed the existence of a series of compounds Sr6–12xCe6xTi5O16 and solid solutions Sr2+nCe2Ti5+nO16+3n ( n ≤ 6).  相似文献   

12.
The phase diagram for the CuO-rich part of the La2O3─CuO join was redetermined. La2Cu2O5 was found to have a lower limit of stability at 1002°± 5°C and an incongruent melting temperature of ∼1035°C. LagCu7O19 had both a lower (1012°± 5°C) and an upper (1027°± 5°C) limit of stability. Subsolidus phase relations were studied in the La2O3─CuO─CaO system at 1000°, 1020°, and 1050°C in air. Two ternary phases, La1.9Ca1.1Cu2O5.9 and LaCa2Cu3O8.6, were stable at these temperatures, with three binary phases, Ca2CuO3, CaCu2O3, and La2CuO4. La2Cu2O5 and La8Cu7O19 were stable only at 1020°C, and did not support solid-solution formation.  相似文献   

13.
(La0.8Sr0.2)0.98Fe0.98Cu0.02O3−δ can be sintered directly onto YSZ (without the need for a protective ceria interlayer). Though subject to an extended "burn-in" period (∼200 h), anode-supported YSZ cells using the Cu-doped LSF achieve power densities ranging from 1.3 to 1.7 W/cm2 at 750°C and 0.7 V. These cells have also demonstrated 500 h of stable performance. The results are somewhat surprising given that XRD indicates an interaction between (La0.8Sr0.2)0.98Fe0.98-Cu0.02O3−δ and YSZ resulting in the formation of strontium zirconate and/or monoclinic zirconia. The amount and type of reaction product was found to be dependent on cathode and electrolyte powder precalcination temperatures.  相似文献   

14.
Ceramics of the melilite-type compound La1+ x Sr1− x Ga3O7−δ were prepared by conventional ceramic processing. Samples prepared represented the entire homogeneity region of the phase (i.e., x =−0.15 to 0.60). Electrochemical characterization under variable temperature and atmospheric conditions in the vicinity of air entailed four-point direct-current conductivity measurements and electromotive force measurements. La1+ x Sr1− x Ga3O7−δ samples exhibited a p -type behavior with generally increased conductivity with increased substitution of lanthanum for strontium, which reached a saturation value of ∼10−1 S·cm−1 at 950°C.  相似文献   

15.
Steady-state compressive creep rate of La0.5Sr0.5Fe0.5Co0.5O3−δ (LSFC) and La0.5Sr0.5CoO3−δ (LSC) is reported in the temperature region 900°–1050°C and stress range 5–28 MPa. The stress exponents for the two materials were 1.71±0.18 and 1.24±0.15, respectively. The activation energy for creep was considerably higher for LSC (619±56 kJ/mol) than for LSFC (392±28 kJ/mol). The grain size exponent for LSC was 1.28±0.14. Considerably higher creep rates were observed for both materials in N2 compared with air. Relaxation by creep of chemical-induced stresses in oxygen-permeable membranes is addressed, especially at low partial pressure of oxygen.  相似文献   

16.
Phase equilibria of the quasi-quaternary system BiO1.5–SrO-YO1.5–CuO have been studied at a temperature of 950°C in air, with special regard to the 1212 phase. The 1212 phase reveals only very small changes in the cation ratio. Single-phase samples exist for (Bi0.24–0.36Cu0.42-0.55)–Sr2Y1.27Cu2O y compositions. The bismuth-rich composition of the 1212 phase is in thermodynamic equilibrium with a liquid and the 2212 phase, whereas the copper-rich composition is in equilibrium with five other phases. The influence of combined calcium and lead doping also has been studied. Exceeding the calcium saturation of the 1212 phase increases the amount of 2212 as a secondary phase. Single-phase 1212 samples do not show any superconductivity in either the as-prepared or the post-annealed state. The only compositions with bulk superconductivity are those with calcium and lead doping after annealing at a temperature of 980°C. The superconductivity is attributed to the 2212 phase crystallizing from the melt during slow cooling.  相似文献   

17.
The Ba-doped superconducting (Bi,Pb)2Sr2- x Ba x Ca2Cu3O y and (Bi,Pb)2Sr2Ca2- x Ba x Cu3O y (0 ≦ x ≦ 1.0) were prepared by using a melt-quenching method, and the effect of Ba additions on the glass-forming ability and the crystalline phase was examined. The glass-forming ability was not improved by substitution of Ba for Sr or Ca, and particularly BaPbO3 as well as CaO was observed in the melt-quenched sample of (Bi,Pb)2SrBaCa2Cu3O y . BaPbO3 crystals were precipitated in all glass-ceramics with Ba substituted for Sr or Ca. The partial substitution of Ba substituted for Sr was effective for the formation of the high- T c phase, and (Bi,Pb)2Sr1.4Ba0.6Ca2Cu3O y glass-ceramics obtained by annealing at 830°C for 100 h exhibited superconductivity with a T c of 103 K, although BaPbO3 and the low- T c phase were still largely present.  相似文献   

18.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

19.
The formation mechanism of the synthesis of MoO3-doped YSr2Cu3O y powders using the citrate process was investigated. It was shown that the precursor phase (Sr1- x Y x )14Cu24O41 played a crucial role in forming the superconducting phase. It was found that the precursor phase (Sr1- x Y x )14Cu24O41 interacted with water and decomposed when it was heavily milled and heated.  相似文献   

20.
Ceramic samples of the melilite-type La1+ x Sr1– x Ga3O7–δ ( x =−0.15 to 0.60) compound were prepared by conventional ceramic processing. Sintering characteristics and microstructural evolution were studied. A phase diagram study was performed to establish the solid solubility limits as a function of the La:Sr ratio. Structural investigations of the Dalton composition as well as strontium- and lanthanum-rich samples entailed X-ray, neutron, and electron diffraction techniques at ambient and elevated temperatures. The homogeneity region was remarkably broad ( x =−0.15 to 0.60) with no changes in space group observed. A small shrinkage of the unit cell was found with increased lanthanum content. Phase transitions at ambient and intermediate temperatures did not occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号