首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper presents an analysis of handover process and its effect on the traffic performance in global mobile personal communications by satellite (GMPCS) systems. With the nongeostationary satellite used for the system, the handover scheme needs to be applied to make calls completed without any interruption. An analytical model is developed for the analysis of the handover process. We derive the mean number of handovers and handover delay with various satellite antenna patterns and different settings of handover parameter. A suitable traffic model of the whole system is also derived after due considerations of the handover process. The system performance measures include new call blocking probability, call dropping probability, and mean number of handovers per call. A computer simulation is developed and used. We also analyze the system performance with a number of handover priority schemes applied. Based on the study results, the handover parameters are selected to maximize the traffic performance. It is shown that we can improve the overall traffic performance of GMPCS system by setting handover parameters properly and using the handover priority scheme  相似文献   

2.
In the near future, low earth orbit (LEO) satellite communication networks will partially substitute the fixed terrestrial multimedia networks especially in sparsely populated areas. Unlike fixed terrestrial networks, ongoing calls may be dropped if satellite channels are shadowed. Therefore, in most LEO satellite communication networks more than one satellite needs to be simultaneously visible in order to hand over a call to an unshadowed satellite when the communicating satellite is shadowed. In this paper, handover characteristics for fixed terminals (FTs) in LEO satellite communication networks are analysed. The probability distribution of multiple satellite visibility is analytically obtained and the shadowing process of satelites for FTs are modelled. Using the proposed analysis model, shadowing effects on the traffic performance are evaluated in terms of the number of intersatellite and interbeam handovers during a call. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Low Earth Orbit (LEO) satellite networks will be an integral part of the next generation telecommunications infrastructures. In a LEO satellite network, satellites and their individual coverage areas move relative to a fixed observer on Earth. To ensure that ongoing calls are not disrupted as a result of satellite movement, calls should be transferred or handed over to new satellites. Since two satellites are involved in a satellite handover, connection route should be modified to include the new satellite into the connection route. The route change can be achieved by augmenting the existing route with the new satellite or by completely rerouting the connection. Route augmentation is simple to implement, however the resulting route is not optimal. Complete rerouting achieves optimal routes at the expense of signaling overhead. In this paper, we introduce a handover rerouting protocol that maintains the optimality of the initial route without performing a routing algorithm after intersatellite handovers. The FHRP makes use of the footprints of the satellites in the initial route as the reference for rerouting. More specifically, after an optimum route has been determined during the call establishment process, the FHRP ensures that the new route due to handover is also optimum. The FHRP demands easy processing, signaling, and storage costs. The performance results show that the FHRP performs similar to a network without any handovers in terms of call blocking probability.  相似文献   

4.
Frequent spotbeam handovers in low earth orbit (LEO) satellite networks require a technique to decrease the handover blocking probabilities. A large variety of schemes have been proposed to achieve this goal in terrestrial mobile cellular networks. Most of them focus on the notion of prioritized channel allocation algorithms. However, these schemes cannot provide the connection-level quality of service (QoS) guarantees. Due to the scarcity of resources in LEO satellite networks, a connection admission control (CAC) technique becomes important to achieve this connection-level QoS for the spotbeam handovers. In this paper, a geographical connection admission control (GCAC) algorithm is introduced, which estimates the future handover blocking performance of a new call attempt based on the user location database, in order to decrease the handover blocking. Also, for its channel allocation scheme, an adaptive dynamic channel allocation (ADCA) scheme is introduced. By simulation, it is shown that the proposed GCAC with ADCA scheme guarantees the handover blocking probability to a predefined target level of QoS. Since GCAC algorithm utilizes the user location information, performance evaluation indicates that the quality of service (QoS) is also guaranteed in the non-uniform traffic pattern.  相似文献   

5.
该文提出了一种适用于低轨星座卫星通信系统多业务条件下的非充分保证切换策略。该策略在小于一个小区最大驻留时间的时间间隔内为到达小区的呼叫安排和预定信道,在呼叫结束环节作为补充策略对存在切换失败风险的信道进行调整。提出了策略在多业务条件下具体的实施方法,根据实时的切换呼叫性能调整策略的非充分程度。通过仿真,分析比较了不同程度非充分保证切换策略的QoS性能,验证了动态自适应调整非充分程度值的IGH策略的有效性。仿真结果表明,相对于保证切换策略,新策略以存在微小切换失败概率为代价,换取了新呼叫阻塞概率的显著降低,是一种适用于多业务低轨卫星通信系统的信道分配策略。  相似文献   

6.
Low earth orbit (LEO) satellite systems gained considerable interest towards the end of the previous decade by virtue of some of the appealing features that are endowed with, such as low propagation delay and the ability to communicate with handheld terminals. However, after the limited commercial success of the first networks of this kind, future satellite networks are now conceived as complementary rather than competitive to terrestrial networks. In this paper, we focus on one of the most influential factors in system performance, that is, the handover of a call. First, we provide a succinct review of the handover strategies that have been proposed in the literature. Then we propose two different satellite handover techniques for broadband LEO satellite systems that capitalize upon the satellite diversity that a system may provide. The proposed schemes cater for multimedia traffic and are based on the queuing of handover requests. Moreover, a deallocation scheme is also proposed according to which capacity reservation requests are countermanded when the capacity that they strive to reserve is unlikely to be used. Simulation studies further document and confirm the positive characteristics of the proposed handover schemes.  相似文献   

7.
The spectacular growth of cellular telephone networks has demonstrated the demand for personal communications. Communication systems based on low earth orbit (LEO) constellations of satellites seem to be an adequate approach to achieve a world-wide network. When defining the capacity in terms of satellite circuits, the network designer has to take into account the handover traffic. Unfortunately, in a LEO communication network where handover is most often due to the network nodes motion, handover traffic models for terrestrial cellular networks cannot be used. Hence specific models must be developed. This paper proposes an analytical model for the handover in LEO satellite networks. This model is applied to different network configurations and compared to discrete-time simulations. Simulation results agree with those obtained from the analytical model.  相似文献   

8.
Low earth orbit satellite constellations could play an important role in future mobile communication networks due to their characteristics, such as global coverage and low propagation delays. However, because of the non‐stationarity of the satellites, a call may be subjected to handovers, which can be cell or satellite handovers. Quite many techniques have been proposed in the literature dealing with the cell handover issue. In this paper, a satellite handover procedure is proposed, that investigates and exploits the partial satellite diversity (namely, the existing common coverage area between contiguous satellites) in order to provide an efficient handover strategy, based always on a tradeoff of blocking and forced termination probabilities for a fair treatment of new and handover calls. Three different criteria were examined for the selection of a satellite. Each one of them could be applied either to new or handover calls, therefore we investigated nine different service schemes. A simulation tool was implemented in order to compare the different service schemes and simulation results are presented at the end of the paper. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
10.
AModelfortheHandoverTrafficandChannelOccupancyTimeinLEOSatelliteNetworksWangJingyu;YaoYongyang(ChinaAcademyofTelecommunicatio...  相似文献   

11.
中低轨卫星之间跨层激光链路的无缝切换直接决定了双层卫星光网络的稳定性.异步切换方法会导致网络拓扑频繁重构,而集中同步切换将造成两层间连接中断,网络运行状态失控.为此,本文提出了中低轨卫星星座激光链路的二次同步切换方法,在保证中低轨道卫星连通的基础上,可降低网络拓扑重构频率.研究了整数周期比的中轨道和低轨道卫星空间位置特性,建立了中低轨卫星星座构形二阶非球摄动模型,确定了中低轨道之间轨道周期比为3的双层卫星星座构形.按连接和切换顺序将该星座构形中跨层激光链路分为两组,以相对周期的1/4为基准,每次令其中一组同步切换,通过交替完成切换.研究结果表明,二次同步切换方法使得网络拓扑重构频率降低到链路切换频率的1/7,比集中切换方法在网络平均时延方面降低了30ms.  相似文献   

12.
唐良瑞  杨安坤  杨雪 《电子学报》2011,39(6):1285-1290
提出了一种适用于TD-SCDMA(Time Division Synchronous Code Division Multiple Access)移动通信系统综合业务(语音/数据)的接力切换策略.该策略为语音切换预留信道,根据语音用户属性设置不同切换优先级,赋予语音切换和语音新呼叫对数据服务信道的强占优先权.仿真表明,...  相似文献   

13.
Low Earth Orbit (LEO) satellite networks are deployed as an enhancement to terrestrial wireless networks in order to provide broadband services to users regardless of their location. In addition to global coverage, these satellite systems support communications with hand-held devices and offer low cost-per-minute access cost, making them promising platform for Personal Communication Services (PCS). LEO satellites are expected to support multimedia traffic and to provide their users with the negotiated Quality of Service (QoS). However, the limited bandwidth of the satellite channel, satellite rotation around the Earth and mobility of end-users makes QoS provisioning and mobility management a challenging task. One important mobility problem is the intra-satellite handoff management. The main contribution of this work is to propose Q-Win, a novel call admission and handoff management scheme for LEO satellite networks. A key ingredient in our scheme is a companion predictive bandwidth allocation strategy that exploits the topology of the network and contributes to maintaining high bandwidth utilization. Our bandwidth allocation scheme is specifically tailored to meet the QoS needs of multimedia connections. The performance of Q-Win is compared to that of two recent schemes proposed in the literature. Simulation results show that our scheme offers low call dropping probability, providing for reliable handoff of on-going calls, good call blocking probability for new call requests, while maintaining bandwidth utilization high.  相似文献   

14.
低轨卫星移动通信系统接入方案   总被引:15,自引:0,他引:15       下载免费PDF全文
在低轨卫星移动通信系统中,由于卫星和移动用户间的相对运动使得呼叫切换频繁发生.为了降低星间切换请求到达率,减小系统切换开销,本文在距离优先接入方案基础上进一步提出了两种接入策略:覆盖时间优先方案和仰角加权的覆盖时间优先方案.构造了非均匀分布全球话务密度模型.并参照某实际系统参数,对不同接入方案准则下的全球话务服务进行了系统仿真,得到了相应的系统性能参数.  相似文献   

15.
Due to the fact that quality of service requirements are not very strict for all traffic types, more calls of higher priority can be accommodated by reducing some bandwidth allocation for the bandwidth adaptive calls. The bandwidth adaptation to accept a higher priority call is more than that of a lower priority call. Therefore, the multi-level bandwidth adaptation technique improves the overall forced call termination probability as well as provides priority of the traffic classes in terms of call blocking probability without reducing the bandwidth utilization. We propose a novel bandwidth adaptation model that releases multi-level of bandwidth from the existing multimedia traffic calls. The amount of released bandwidth is decided based on the priority of the requesting traffic calls and the number of existing bandwidth adaptive calls. This prioritization of traffic classes does not reduce the bandwidth utilization. Moreover, our scheme reduces the overall forced call termination probability significantly. The proposed scheme is modeled using the Markov Chain. The numerical results show that the proposed scheme is able to provide negligible handover call dropping probability as well as significantly reduced new call blocking probability of higher priority calls without increasing the overall forced call termination probability.  相似文献   

16.
Evaluates four handoff priority-oriented channel allocation schemes. These give priority to handoff calls by reserving channels exclusively for handoff calls. The measurement-based handover channel adaptive reassignment scheme (MHAR-A) exclusively uses reserved handover channels for newly originated calls if a certain criterion is satisfied. All four schemes studied differ from the conventional guard channel-based handover priority-oriented channel allocation scheme. To study the schemes, a personal communication network (PCN) based on city street microcells is considered. A teletraffic simulation model accommodating a fast moving vehicle is developed, and the performance parameters are obtained. The performances of all four schemes are compared with the nonpriority scheme and the conventional guard channel-based handover priority-oriented channel allocation scheme. It was found that some of the channel allocation algorithms studied improved the teletraffic capacity over the nonpriority and the conventional guard case. Also, the probability of new call blocking and carried traffic was improved for three of the schemes when compared to the conventional guard scheme. The MHAR-A scheme did not perform up to expectation. Nevertheless, it can be used to finely control the communication service quality equivalent to the control obtained by varying the number of handoff channels in a fraction of one. Increasing the number of reserved handover channels in fraction of one can never be achieved in the conventional guard channel-based handover priority-oriented channel allocation scheme  相似文献   

17.
Santucci  F. 《Electronics letters》1997,33(8):662-664
A recursive method is proposed for calculating the blocking probabilities of new calls and handover requests in cellular mobile networks with guard channels (or cutoff priority) for handovers. The method is based on a new recursive formula which represents a generalisation of the Erlang B formula used for the full access problem. The proposed algorithm generally holds true for the evaluation of trunk performance with two traffic streams and cutoff priority  相似文献   

18.
Low earth orbit (LEO) satellite communication systems perform frequent intersatellite handovers for both fixed and mobile users. This paper proposes a satellite selection scheme for new/handover call requests when two or more satellites can be seen simultaneously. Each satellite in this scheme has a non-uniform transmitter antenna gain according to its relative position inside the coverage area. The antenna gain is proportional to the residual distance in the satellite's direction of movement and it compensates for the difference in path losses between satellite links. The residual distance distribution of the selected satellite and the mean number of intersatellite handovers during a call connection are calculated and compared with the results based on conventional methods. The proposed scheme can reduce the intersatellite handover call attempt rate without increasing system load and terminal complexity. Furthermore, this scheme can be extended to reduce both intersatellite and interbeam handover call attempt rates in a multiple spot beam environment. Especially, the average number of intersatellite and interbeam handovers during a call can be significantly reduced by using a hybrid algorithm with the proposed non-uniform power transmission scheme. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
在均匀业务模型的基础上,根据LEO卫星通信系统自身特点,提出了一种简单有效的呼叫接入控制策略,这种策略能在非均匀业务下较好地工作,此时系统新呼叫阻塞率和切换呼叫失败率能达到更好的平衡。在分析随机接入(RANDOM)算法和预留保护信道(GC)算法的基础上,进行了计算机仿真,并给出了相应的仿真结果。  相似文献   

20.
In future personal communications networks (PCNs) supporting network-wide handoffs, new and handoff requests will compete for connection resources in both the mobile and backbone networks. Forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. The previously proposed guard channel scheme for radio channel allocation in cellular networks reduces handoff call blocking probability substantially at the expense of slight increases in new call blocking probability by giving resource access priority to handoff calls over new calls in call admission control. While the effectiveness of a fixed number of guard channels has been demonstrated under stationary traffic conditions, with nonstationary call arrival rates in a practical system, the achieved handoff call blocking probability may deviate significantly from the desired objective. We propose a novel dynamic guard channel scheme which adapts the number of guard channels in each cell according to the current estimate of the handoff call arrival rate derived from the current number of ongoing calls in neighboring cells and the mobility pattern, so as to keep the handoff call blocking probability close to the targeted objective while constraining the new call blocking probability to be below a given level. The proposed scheme is applicable to channel allocation over cellular mobile networks, and is extended to bandwidth allocation over the backbone network to enable a unified approach to prioritized call admission control over the ATM-based PCN  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号