首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
解脂耶氏酵母(Yarrowia lipolytica)可很好地发酵甘油生产赤藓糖醇。NaCl作为渗透压调节剂提升发酵体系渗透压有利于提高赤藓糖醇产量,但高渗会抑制酵母生长,延长发酵周期,降低生产强度。该研究以甘氨酸、脯氨酸为渗透压保护剂,在高渗环境下,研究其如何提升酵母细胞耐高渗能力。结果发现,Y.lipolytica可吸收胞外甘氨酸和脯氨酸并在胞内积累以抵御高渗胁迫,并显著提升高渗环境下的菌体量,促进赤藓糖醇的高效合成。在7 L发酵罐水平,初始渗透压为4.17±0.17 osmol/kg时,发酵初始添加30 mg/L甘氨酸和40 mg/L脯氨酸,发酵时间由108 h减少到90 h,赤藓糖醇最终产量达到了93.6±4.2 g/L,生产强度为1.04±0.05 g/(L·h),产物得率为0.49±0.03 g/g,分别比未添加保护剂时增加了4.12%,25.3%和4.26%。  相似文献   

2.
对陶瓷膜过滤后的海藻糖糖化液进行成分分析,确定主要成分及营养指标。结合成分分析结果,补加氮源进行偶联发酵并对氮源补加量进行优化,在确定的最佳氮源添加量下进行小试工艺的研究与优化。结果表明,偶联发酵最适氮源补加量为酵母浸膏、酵母浸粉各3 g/L;偶联发酵能够实现消耗葡萄糖的目的,发酵72 h,对照组及补氮组残糖分别降至0.09 g/L、0.05 g/L。此外,补充氮源提升了赤藓糖醇得率,但赤藓糖醇水平较低,仅为25.4 g/L,糖醇转化率为30.70%。在补充氮源的基础上,向底料培养基补加葡萄糖至终浓度200 g/L进行发酵,赤藓糖醇得率大幅度提升,发酵液赤藓糖醇浓度提升至104.62 g/L,糖醇转化率50.18%,较优化前分别提升了97.32 g/L,42.26%。该优化偶联发酵工艺降低了下游海藻糖分离纯化的难度,提高了海藻糖的生产效益。本研究为其他稀有糖的生产提供了新的思路。  相似文献   

3.
Torulopsis sp.ERY237产赤藓糖醇工艺条件的研究   总被引:1,自引:0,他引:1  
以Torulopsis sp.ERY237作为出发菌株,考察了不同碳源、氮源、无机盐类以及温度等因素对菌种产赤藓糖醇的影响,建立和优化了赤藓糖醇摇瓶发酵培养基配方、发酵工艺条件,同时研究了发酵过程中菌体生物量、pH值、产物浓度的动态变化。结果表明,菌株的最适培养基配方为(g/L):葡萄糖300,玉米浆3.5,C_([Cu~(2+)])1.5,C_([Mn~(2+)])10;适宜的培养条件为初始pH值自然,温度30℃,装液量50 mL/500 mL,转速200 r/min,在此条件下培养132 h赤藓糖醇产量达87.8 g/L,是优化前产量的1.9倍,发酵时间缩短了12 h。  相似文献   

4.
该研究在5 L发酵罐水平上研究了不同初始葡萄糖质量浓度对解脂耶氏酵母(Yarrowia lipolytica)JZ-204生长和发酵产赤藓糖醇的影响。结果表明,100 g/L初始葡萄糖质量浓度有利于菌体生长,高初始葡萄糖质量浓度(300 g/L和400 g/L)有利于赤藓糖醇合成。基于此,提出两阶段葡萄糖质量浓度调控策略,即0 h时以初始葡萄糖质量浓度为100 g/L,22 h后通过补加葡萄糖使总糖量达300 g/L进行发酵。结果表明,与分批发酵相比(100 g/L、200 g/L、300 g/L、400 g/L),采用该调控策略,赤藓糖醇产量达到最高水平92.66 g/L,分别比分批发酵提高了1 347.81%、84.54%、14.66%、7.57%;生产强度达到最高的0.48 g/(L·h),分别比分批发酵提高了300%、37.14%、29.73%、20.00%。该调控策略为赤藓糖醇的高效发酵合成提供参考。  相似文献   

5.
研究了圆酵母(Torula sp.)B84512以不同碳源发酵产赤藓糖醇过程中副产物甘油的生成与消耗情况。发现该菌株在以任何碳源为底物发酵过程中均会产生甘油,且在发酵中后期甘油逐渐被消耗。以甘油为唯一碳源时该菌株合成赤藓糖醇的速率及产率均低于葡萄糖。葡萄糖为圆酵母B84512发酵产赤藓糖醇的最佳碳源。采用分批补料的方式提高赤藓糖醇的产率并期望能抑制甘油的生成,实验结果表明补料至总糖浓度为50%时赤藓糖醇产量最高为253 g/L,产率为1.03 g/(L.h)。但甘油产量与葡萄糖的浓度呈正相关,分批补料并不能有效抑制甘油的生成,反而导致发酵周期大大延长,对于工业化生产极其不利。通过对甘油的生成及消耗过程中关键酶胞浆3-磷酸甘油脱氢酶(ctGPD)、3-磷酸甘油酯酶(GPP)、线粒体3-磷酸甘油脱氢酶(mtGPD)酶活测定,确定胞浆3-磷酸甘油脱氢酶为甘油合成途径的关键酶,为以后对圆酵母B84512中甘油代谢途径的基因工程改造选育奠定了基础。  相似文献   

6.
耐高渗酵母产赤藓糖醇的影响因素   总被引:4,自引:0,他引:4       下载免费PDF全文
球拟酵母OS-194是一株单产赤藓糖醇的耐高渗酵母,该菌株高产赤藓糖醇的最佳培养基配方为葡萄糖10g/dL,酵母膏0.5g/dL,尿素0.1g/dL.最适培养条件是在摇瓶转速150r/min的条件下于35℃培养4d.在上述培养条件下,该菌株赤藓糖醇的耗糖转化率高达29.6%.磷是限制OS-194菌株高产赤藓糖醇的主要因素,当培养液中的磷质量浓度低于31.5mg/L时,赤藓糖醇的产量最高;随着磷质量浓度的升高,该菌株赤藓糖醇的产量降低,而酒精的产量和生物量却有明显升高.同时,OS-194菌株还能利用果糖、蔗糖和D-甘露糖产赤藓糖醇.  相似文献   

7.
刘鹏  王泽南  苏娅  李莹  张秋子  吴红引 《食品科学》2010,31(21):308-311
利用含有300g/L 葡萄糖的高渗培养基从蜂蜜、花粉、土壤等样品中筛选耐高渗酵母菌,经薄层层析和高效液相色谱分析得到两株产赤藓糖醇且不产甘油的酵母菌,通过高碘酸氧化法筛选出其中赤藓糖醇产量较高的一株菌株E54。菌株E54 在含葡萄糖200g/L、酵母膏5g/L 的发酵培养基中发酵90h,赤藓糖醇产量为41.1g/L,转化率为22.8%。通过形态观察、生理生化实验、5.8S rDNA 序列分析并构建系统进化树,初步鉴定E54 为Moniliellaacetoabutans(丛梗孢酵母)。  相似文献   

8.
丛梗孢酵母BH010是从蜂蜜样品中分离得到的产赤藓糖醇菌株。该实验研究了发酵培养基及发酵条件对丛梗孢酵母赤藓糖醇产量的影响。单因素实验及正交实验的结果表明,最佳发酵培养基及发酵条件为:葡萄糖含量(质量浓度)35%、酵母膏含量(质量浓度)1%、CaCl2.2H2O(质量浓度)0.2%,初始pH6.0,接种量1%,30℃摇瓶培养9d。最终赤藓糖醇产量为110.61g/L发酵液,比普通发酵条件下提高85.56%。  相似文献   

9.
刘鹏  王泽南  李莹  张秋子  吴红引 《食品科学》2011,32(11):216-221
利用微波-硫酸二乙酯复合诱变对产赤藓糖醇丛梗孢酵母E54进行处理,以高渗平板和摇瓶发酵为筛选方法,得到遗传稳定的诱变高产株EW29;再采用氮离子注入对EW29进行诱变处理,摇瓶发酵筛选得到诱变株EN59,其90h发酵液中赤藓糖醇产量达到55.13g/L,较EW29提高20.3%,较E54提高36.9%,遗传稳定性较好。对突变株EN59的发酵培养基进行了优化,在优化培养基葡萄糖250g/L、酵母膏5g/L、KH2PO4 0.3g/L、MnSO4 ·4H2O 0.04g/L、CuSO4 ·5H2O 0.03g/L,初始pH4的条件下,90h发酵液中赤藓糖醇平均产量达到69.00g/L以上。在优化培养基的基础上进行5L罐发酵放大实验,发酵126h赤藓糖醇产量达到71.14g/L。  相似文献   

10.
玉米芯因其独特的结构和营养成分,被综合利用于众多领域。本研究选用解脂耶氏酵母(Y. lipolytica)作为发酵菌株,将玉米芯作为唯一碳源,开展发酵产赤藓醇的实验研究,综合考察了培养基组成和发酵条件对赤藓醇产量的影响。研究结果表明:Y. lipolytica可以利用玉米芯为唯一碳源发酵产赤藓醇,发酵最适碳源浓度为60 g/L、最佳氮源种类为氯化铵、最佳氮源浓度为2.5 g/L;添加浓度为50.0 g/L的NaCl能为发酵产醇提供较适宜的渗透压;向培养基中添加8 mg/L的Zn~(2+)和15.0 mg/L的Fe~(3+),能进一步提升赤藓醇的产量。在最优培养基条件下持续发酵96 h,赤藓醇的产量最高可达37.26 g/L,赤藓醇转换率可达62.1%。该研究为废弃玉米芯的再利用和赤藓醇的低成本发酵生产探索了一条新途径。  相似文献   

11.
为获得低成本高酶活的产CMP-唾液酸合成酶(Cytidine 5'-monophosphate N-acetylneuraminic acid synthetase,NmCSS)培养基,对无乳链球菌(Streptococcus agalactiae)产CMP-唾液酸合成酶发酵生产培养基进行优化。通过单因素试验筛选发酵温度、碳源、氮源、pH,确定对NmCSS酶活具有明显影响的因子及水平值;采用响应面法(Box-Behnken)确定以氮源浓度、碳源浓度、pH为三个主要影响因子的最适条件。结果表明,当培养温度为34℃时,蔗糖浓度为0.10%,氮源浓度为2.50%,pH为7.5、Na2HPO4 2.5 g/L、NaCl 5.0 g/L时,NmCSS酶活为(5.895±0.005)×107 U/mol,较基础发酵培养基的酶活(0.507±0.002)×107 U/mol提高了10.627倍,显示出了良好的优化效果。响应面方法优化得到的低成本高酶活培养基为无乳链球菌产NmCSS及其应用奠定了基础。  相似文献   

12.
虾青素是一种强抗氧化剂,在细胞抵御外界环境胁迫方面起到重要作用。研究了氮饥饿/过氧化氢协同胁迫对法夫酵母合成虾青素的影响,结果表明:低含氮量有利于虾青素的合成,随着碳氮比的降低,虾青素的合成受到抑制,最佳的碳氮比为3∶0.6,每克干细胞虾青素的含量最高达0.32mg/g;在此基础上添加5mmol/L过氧化氢协同胁迫法夫酵母可进一步提高虾青素的产量,在发酵24h(对数生长期)加入3mmol/L的H2O2,36h补加2mmol/L,虾青素产量达到0.59mg/g,比空白对照提高63.9%。  相似文献   

13.
为提高植物乳杆菌的增殖浓度,分别测定菌株在添加不同氮源、不同缓冲盐、不同浓度的MnSO4和不同促生长物质时菌株的生长浓度。结果表明,酵母类氮源是植物乳杆菌的最适氮源,缓冲盐在恒pH培养时对菌株生长无促进作用,锰浓度与最高活菌数呈正相关,在以酵母浸粉为氮源时植物乳杆菌培养不需要添加其他生长因子。进一步优化菌株的最适pH值和碳氮比,基于可耐受渗透压,优化恒pH培养和恒pH自动反馈补料培养基和培养工艺,得到各菌株的最适培养策略。3株菌的最适氮源添加量为40~45 g/L,MnSO4的最适添加量为0. 25 g/L,最适碳氮比为对数生长期生长速率被抑制时的碳氮消耗比。恒pH 5. 5自动反馈补料培养植物乳杆菌X1,活菌数达到4. 1×10^10CFU/mL;恒pH 5. 5分批培养植物乳杆菌N8,活菌数达到2. 9×10^10CFU/m L;恒pH 6. 0分批培养植物乳杆菌N9,活菌数达到6. 2×10^10CFU/mL。该研究结果的应用将显著提高植物乳杆菌的工业化生产效率。  相似文献   

14.
高大毛霉发酵产γ-亚麻酸的初步研究   总被引:4,自引:2,他引:4  
对采用高大毛霉进行微生物发酵生产γ 亚麻酸作了初步探索。主要对培养基组成 :碳源、氮源、碳氮比、无机盐、最适氮源浓度进行了均匀试验设计 ;同时对培养条件 (pH值、通气量 )进行了实验。优化了发酵培养基组成 (g/L) :淀粉 185 6、(NH4) 2 SO42 7、KH2 PO42、蛋白胨 0 1、酵母浸粉 0 2。较适的 pH值是 5 5 ,装液量 3 0 %。结果表明 ,γ 亚麻酸含量可高达 3 0 %以上 ,与传统菌种相比具有广泛的应用前景  相似文献   

15.
对从云南传统发酵豆豉分离得到的植物乳杆菌YM-2(Lactobacillus plantarum YM-2)菌株胞外多糖(exopolysaccharide,EPS)生物合成条件进行优化。首先对培养基成分中的碳源、氮源种类进行筛选;然后利用单因素试验分析碳源含量、氮源含量、培养时间以及培养温度对EPS产量的影响;最后采用Box-Behnken法进行四因素三水平响应面分析以确定其最优工艺条件。结果表明,植物乳杆菌YM-2菌株生物合成EPS最佳条件为碳源(葡萄糖)含量30 g/L、氮源(酵母粉)含量30 g/L、培养时间30.05 h、培养温度36.36℃,在此工艺条件下,植物乳杆菌YM-2 EPS产量为257.362 mg/L。  相似文献   

16.
味精粗料作为聚谷氨酸合成前体的培养条件优化   总被引:1,自引:0,他引:1  
为降低聚谷氨酸生产成本,采用本实验室筛选得到的枯草芽孢杆菌,编号为CGMCC No.1250。考察了不同的谷氨酸钠替代品,味精粗料最佳,并考察了味精粗料的含量、碳源和氮源及其浓度、NaCl浓度、装液量以及温度等对-γPGA产量的影响。实验结果表明,对于该菌株,最适碳源和氮源分别是蔗糖和蛋白胨;在含有70 g/L蔗糖5、0 g/L蛋白胨、30 g/L NaCl,pH7.0,含味精粗料体积分数为26.6%(含谷氨酸120 g/L)的发酵液中,37℃,220 r/min培养24 h,-γPGA的产量达到41.7g/L。  相似文献   

17.
以富含蛋白质的浮萍作为有机氮源,接种一株通过自然筛选而得的新颖菌株Serratia sp.SYBC H,进行微生物发酵生产稀有的蛋白酶,为浮萍的高值化利用开创一条新途径。先采用单因素实验,研究影响Serratia sp.SYBC H发酵浮萍生产蛋白酶的发酵时间,碳源,C/N比,无机盐,产酶添加剂,结果发现:以小麦粉为碳源,小麦粉与浮萍比例为1:2,Na Cl,表面活性剂吐温80,显著促进Serratia sp.SYBC H生产蛋白酶。接着采用正交试验,研究影响Serratia sp.SYBC H生产蛋白酶的发酵培养基的主要组成及其使用量。结果显示,在实验范围内,影响Serratia sp.SYBC H生产蛋白酶的发酵培养基组成及其最佳使用量为小麦粉15 g/L,浮萍30 g/L,吐温80,0.8%(V/V),Na Cl 0.05 mol/L。接种发酵18 h后,蛋白酶的生产值达到最大值,发酵液中最高蛋白酶活达到1459.94U/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号