首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
高瓦斯矿井的老采空区一般都积聚着大量瓦斯,其中聚集的瓦斯发生泄漏或涌出也是引起回采工作面瓦斯超限的原因之一。麦捷煤矿在对回采工作面老采空区瓦斯治理的过程中,选择在非应力集中区采用新型混凝土浇筑密闭墙,进行插管抽采瓦斯,有效地抑制了瓦斯等气体的泄出,使150506回采工作面日均产量提高约28.9%,为矿井安全生产提供了保障作用。  相似文献   

2.
为了解决综采工作面采空区瓦斯向回采空间和回风隅角涌出而造成的局部瓦斯积聚和超限问题,沿煤层顶板裂隙发育带施工走向高位抽采巷,对采空区瓦斯进行抽采。通过对走向高位抽采巷抽采采空区瓦斯效果和对回风流、回风隅角瓦斯浓度的影响分析,得出走向高位抽采巷末端进入采空区40 m左右时,抽采效果达到峰值,并基本稳定,解决了综采工作面生产期间回风流、回风隅角瓦斯治理难题,杜绝了瓦斯超限事故。  相似文献   

3.
为减少煤炭作业中瓦斯突出灾害的发生率,提出了超大直径钻孔采空区瓦斯抽采技术。选取阳煤二矿21501工作面为研究对象,利用Fluent模拟软件,对钻孔间距、钻孔个数、上隅角距离、抽采排量进行数值模拟。研究表明:当钻孔间距为30 m时,压实区中低瓦斯浓度区域进一步增大,瓦斯控制效果较好;当采空区存在3个抽采孔时,钻孔能够影响到压实区,压实区的瓦斯浓度有明显下降;当第1个钻孔与上隅角的距离为15 m时,抽采孔能有效控制压实区的范围;185 m3/min的抽采排量能够大幅度降低采空区的瓦斯浓度,保证工作面安全生产。  相似文献   

4.
针对采煤工作面在回采过程中,受邻近层等影响,采空区瓦斯涌出量巨大,传统的钻场抽采,效果较差;专用的高抽巷,成本太高;采用煤巷掩护方式对采空区进行大面积的集中连续抽采,是一种既安全又经济实用的抽采方法,取得良好的效果.  相似文献   

5.
高抽巷瓦斯抽采实践与探索   总被引:1,自引:0,他引:1  
依兰矿区方正县煤矿放顶煤工作面,采用高抽巷抽采瓦斯方法进行瓦斯治理,有效地降低了采煤工作面和回风流的瓦斯涌出量,提高了通风生产能力,瓦斯治理效果明显,技术经济合理,给安全生产创造了良好的通风条件。  相似文献   

6.
大直径高位钻孔代替高抽巷抽采瓦斯的研究   总被引:7,自引:0,他引:7  
针对高抽巷施工工程量大、投入大的问题,在沙曲矿24207综采工作面进行了大直径高位钻孔替代高抽巷的试验,对二者的抽采效果进行了对比分析。高位钻孔抽采瓦斯效果达到了高抽巷抽采瓦斯的效果,且高位钻孔呈扇形布置,能扩大抽采范围,延长瓦斯抽采服务时间,提高瓦斯抽采率,将工作面回风瓦斯体积分数控制在0. 33%左右。应用结果表明用大直径高位钻孔代替高抽巷进行瓦斯抽采是可行的。  相似文献   

7.
王硕 《中州煤炭》2018,(6):20-25
随着开采深度的增大,某矿采煤工作面的瓦斯涌出量日益增大,尤其是回风巷及工作面上隅角瓦斯问题,制约着工作面的安全持续生产。目前采用的本煤层抽采虽取得一定消突效果,但是上隅角瓦斯超限时有发生,为更好地解决这一问题,选择在顶板布置走向高抽巷的治理方案。但目前高抽巷布置层位及高度多根据经验确定,很多高抽巷并不能有效降低工作面瓦斯,因此准确选定高抽巷位置对于上隅角瓦斯治理有着重要意义。基于理论计算,结合某矿地质及开采条件,在12061工作面进行了现场试验,确定了走向高抽巷的合理布置位置,为矿井后续工作面的高抽巷布置提供有效的经验。  相似文献   

8.
针对镇城底矿1301采煤工作面回采过程中瓦斯涌出量较大、回风隅角瓦斯浓度时有超标的问题,对瓦斯高抽巷布置方式进行了详细分析,确定了倾向高抽巷的布置方式。通过对瓦斯高抽巷与工作面不同距离情况下瓦斯抽采效果以及回风隅角瓦斯浓度的对比分析,发现倾向高抽巷与工作面的距离为144m时,瓦斯抽采效果最好,可有效解决工作面瓦斯浓度超标问题。  相似文献   

9.
基于山西某矿9101工作面的实际情况,利用Fluent模拟软件针对高抽巷不同抽采负压对采空区瓦斯分布规律的影响进行研究。结果表明:采空区在高抽巷不同抽采负压下均呈高瓦斯区域逐渐减小,低瓦斯区域逐渐增加的趋势,采空区内回风侧瓦斯浓度降低的速度比进风侧采空区大,且距离工作面越近,高抽巷瓦斯抽采的影响越明显;随着高抽巷抽采负压的增加,高抽巷抽采混量和抽采瓦斯纯量都逐渐增加,抽采负压超过12 k Pa后,抽采瓦斯纯量增速明显减小;抽采瓦斯浓度呈先增大后减小的趋势,当抽采负压为12 k Pa时存在1个峰值即14.25%,综合考虑高抽巷抽采瓦斯纯量和瓦斯浓度的变化,确定9101工作面高抽巷抽采负压为12 k Pa左右最合理。通过现场实测的采空区瓦斯浓度值与模拟值基本吻合,误差在工程允许的范围内。  相似文献   

10.
冯争 《山东煤炭科技》2021,39(7):132-134,140
为了解决高瓦斯矿井工作面采空区瓦斯涌出问题,以高河能源E2306工作面为对象,研究提出采用高位大直径钻孔替代高抽巷进行采空区瓦斯治理,确定了高位大直径钻孔布置参数和施工工艺,并对抽采效果进行了井下试验分析.从瓦斯浓度、抽采混量和抽采纯量进行分析对比,高位大直径钻孔替代高抽巷抽采效果更好.  相似文献   

11.
自动变径大直径钻孔抽放煤层瓦斯试验   总被引:6,自引:0,他引:6  
根据钻孔塑性区力学特性,应用常规钻机和自动变径扩孔钻具在突出煤层打大直径钻孔,解决了突出煤层打大直径钻孔可能诱导煤与瓦斯突出问题,对抽放效果进行了对比考察。试验结果表明,大直径钻孔有效排放半径是普通钻孔的1.84倍,提高瓦斯抽放量1.58倍。  相似文献   

12.
大直径水平长钻孔瓦斯抽放技术在千秋煤矿的应用   总被引:1,自引:0,他引:1  
介绍了千秋煤矿21121综放工作面利用大直径水平长钻孔抽放瓦斯的技术方法和效果。比较了高位钻场岩石钻孔抽放与低位钻场高位钻孔抽放的优缺点,得出了采用高位钻场大直径水平长钻孔瓦斯抽放技术具有抽放流量大,钻孔利用率高,抽放效果稳定等优点。  相似文献   

13.
针对高瓦斯厚煤层高强度开采条件下“三进两回”型通风系统回风隅角瓦斯治理的难题,通过对矿井回采工作面通风方式进行优化,使工作面形成偏“Y”型的通风方式,并与大直径水平钻孔施工工艺相结合,提出了大直径水平钻孔桥接采空区抽采瓦斯技术,应用于保德煤矿综采放顶煤回采工作面的采空区瓦斯抽采。结果表明:偏“Y”型通风方式可减少工作面巷道掘进工程量,缩短准备周期,为瓦斯抽采创造了良好的时空条件;大直径水平钻孔桥接采空区抽采瓦斯技术的应用效果明显,可连续、高效实施采空区的密闭抽采,有效控制采空区瓦斯涌出强度;大直径水平钻孔桥接采空区抽采瓦斯技术能够实现对抽采负压的有效控制,有利于进一步提高采空区瓦斯抽采效果,并且其抽采支管可回收,可降低矿井瓦斯治理的成本。  相似文献   

14.
杉木树矿为煤与瓦斯突出矿井,瓦斯灾害严重,瓦斯抽采对矿井安全生产具有重大意义,而瓦斯抽采的关键影响因素在于煤层的透气性和抽采钻孔。由于以前施工的钻孔终孔孔径小(<75 mm),有效抽采段长度短,抽采效果差,不利于瓦斯的抽采;采用直径大于120 mm的钻孔后,钻孔孔径增大,钻孔更深,有效抽采长度更长,孔内暴露面积更大,孔内裂隙较φ75 mm钻孔更发育,提高了煤层的透气性,抽采效果好。大直径钻孔在杉木树矿的成功应用,提高了抽采率,为杉木树矿创造了安全生产的条件。  相似文献   

15.
结合五阳煤矿7605高瓦斯综放面地质生产条件,通过建立三维CFD模型对全岩瓦斯尾巷瓦斯抽排效果进行了对比分析。数值模拟对比分析与现场实测结果表明:全岩瓦斯尾巷能有效将上隅角及回风巷瓦斯浓度降低到0.8%以内,减少了断电次数,为工作面稳定生产提供了保障。  相似文献   

16.
为研究高瓦斯矿井采用高抽巷防止采空区复合灾害的发生,以山西大同塔山矿13190工作面工程地质条件为背景,通过现场调研、理论分析、数值模拟和工业性试验等手段,对13190工作面的风量分布、瓦斯治理效果和氧化带宽度进行了风险分析。结果表明:随着抽放速率的提高,可有效保证通风稀释瓦斯的安全性,但同时漏风量的增加使得氧化带宽度增大。通过对采空区CH4体积分数、漏风量和氧化带分布变化进行风险评估,确定合理的抽放速率为180 m3/min,并通过现场工业性试验进行了验证。研究成果可为类似条件工作面回采过程中高抽巷抽放速率的优化调整提供依据。  相似文献   

17.
阳泉三矿K8206综放面瓦斯超限严重,以相似理论为基础,设计制作了试验模型.在该模型上相对于工作面回风巷不同水平距离位置布置了4条内错尾巷,研究在高抽巷位置相对现场不变的条件下,不同位置组合的双尾巷治理工作面瓦斯的效果.试验结果表明,双尾巷能够显著地降低回风巷瓦斯的浓度,当双尾巷相对回风巷的水平距离分别为65 m和130 m时,治理工作面瓦斯效果最佳.  相似文献   

18.
结合某大型商厦桩基工程实例 ,介绍了复杂地区超深、大直径人工挖孔桩的施工技术及独到的处理措施  相似文献   

19.
为提高近距离煤层群下保护层开采上部邻近煤层卸压瓦斯抽采效果,减小工作面瓦斯涌出量,提出了高抽巷结合巷内布置上向钻孔的抽采方法,探讨了该方法的原理、技术参数和有关工艺,并在贵州盘江精煤股份有限公司金佳矿进行了工程实践.实践表明,高抽巷结合巷内布置上向钻孔的抽采方式有利于更好地抽采上部煤层的卸压瓦斯,提高抽采效果;在下保护层工作面开采早期,上向钻孔抽采瓦斯量小且浓度较低,中期抽采效果好,后期抽采效果逐渐变差.上向钻孔布置参数及抽采工艺有待继续深入研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号