首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Legume–maize rotation and maize nitrogen (N)-response trials were carried out simultaneously from 1998 to 2004 in two distinct agro-ecological environments of West Africa: the humid derived savannah (Ibadan) and the drier northern Guinea savannah (Zaria). In the N-response trial, maize was grown annually receiving urea N at 0, 30, 60, 90 and 120 kg N ha−1. In Ibadan, maize production increased with N fertilization, but mean annual grain yield declined over the course of the trial. In Zaria, no response to N treatments was observed initially, and an increase in the phosphorus (P) and sulphur (S) fertilizer application rate was required to increase yield across treatments and obtain a response to N applications, stressing the importance of non-N fertilizers in the savannah. In the rotation trial, a 2-year natural fallow–maize rotation was compared with maize rotated with different legume types: green manure, forage, dual-purpose, and grain legumes. The cultivation of some legume types resulted in a greater annual maize production relative to the fallow–maize combination and corresponding treatments in the N-response trial, while there was no gain in maize yield with other legume types. Large differences in the residual effects from legumes and fallow were also observed between sites, indicting a need for site-specific land management recommendations. In Ibadan, cultivation of maize after the forage legume (Stylosanthes guianensis) achieved the highest yield. The natural fallow–maize rotation had improved soil characteristics (Bray-I P, exchangeable potassium, calcium and magnesium) at the end of the trial relative to legume–maize rotations, and natural fallow resulted in higher maize yields than the green manure legume (Pueraria phaseoloides). In Zaria, maize following dual-purpose soybean achieved the highest mean yield. At both sites, variation in aboveground N and P dynamics of the legume and fallow vegetation could only partly explain the different residual effects on maize.  相似文献   

2.
Contribution of legumes towards N economy in cereal-based cropping systems is well-known but there has been a gradual decline in the cultivation of grain legumes, threatening sustainability of maize (Zea mays)–wheat (Triticum aestivum) cropping system in north-western India. A study was made to evaluate and quantify the effect of different grain legumes on productivity, profitability, N economy and soil fertility in maize–wheat cropping system at New Delhi during 2002–2004. Five legumes, viz. blackgram (Vigna mungo), greengram (Vigna radiata), cowpea (Vigna unguiculata), groundnut (Arachis hypogaea) and soybean (Glycine max) were either intercropped with maize or grown in sole cropping, and their residues were incorporated before the following crop of wheat, which was grown with varying rates of N, viz. 0, 40, 80 and 120 kg N ha−1. Maize-equivalent productivity was significantly more with intercropped greengram (16.1–29.9%), cowpea (24.8%) and groundnut (11.1–16.6%) than in sole maize. Land equivalent ratio and other competitive functions were favourably influenced with intercropped maize + greengram and maize + cowpea. Addition of N through legume residues varied from 11.5–38.5 kg ha−1 in intercropped system and 17.5–83.5 kg ha−1 in sole cropping, which improved productivity of following wheat to a variable extent. Nitrogen economy in wheat was 21 kg ha−1 due to residue incorporation of intercropped greengram, cowpea and groundnut; and 49–56 kg N ha−1 of sole cropped greengram and groundnut. Residual soil fertility in terms of organic C and KMnO4-N showed an improvement under maize-based intercropping systems followed by wheat, and the beneficial effect was more pronounced with sole cropping of legumes due to greater addition of residues. Apparent N balance as well as actual change in KMnO4-N at the end of study was positive in most intercropped legumes as well as sole cropping systems, with greater improvement noticed under groundnut, soybean and greengram. Net returns were marginal with maize-based intercropping or sole cropping of legumes, but improved considerably with wheat, particularly when greengram, cowpea and groundnut were grown in the previous season. The studies suggested that inclusion of grain legumes, particularly greengram, cowpea and groundnut was beneficial for improving productivity, profitability, N economy and soil fertility in maize–wheat cropping system.  相似文献   

3.
Integrated soil management with leguminous cover crops was studied at two sites in the northern Guinea savanna zone of northern Nigeria, Kaduna (190 day growing season) and Bauchi (150 days). One-year planted fallows of mucuna, lablab, and crotalaria were compared with natural grass fallow and cowpea controls. All treatments were followed by a maize test crop in the second year with 0, 30, or 60 kg N ha–1 as urea. Above ground legume residues were not incorporated into the soil and most residues were burned early in the dry season at the Kaduna site. Legume rotation increased soil total N, maize growth in greenhouse pots, and dry matter and N accumulation of maize. Response of maize grain yield to 30 kg N ha–1 as urea was highly significant at both sites and much greater than the response to legume rotation. The mean N fertilizer replacement value from legume rotation was 14 kg N ha–1 at Kaduna and 6 kg N ha–1 at Bauchi. W ith no N applied to the maize test crop, maize grain yield following legume fallow was 365 kg ha–1 higher than natural fallow at Bauchi and 235 kg ha–1 higher at Kaduna. The benefit of specific legume fallows to subsequent maize was mostly related to above ground N of the previous legume at Bauchi, where residues were protected from fire and grazing. At Kaduna, where fallow vegetation was burned, maize yield was related to estimated below ground N. The results show that legume rotation alone results in small maize yield increases in the dry savanna zone.  相似文献   

4.
High profile nitrate-nitrogen (N) accumulation has caused a series of problems, including low N use efficiency and environmental contamination in intensive agricultural systems. The key objective of this study was to evaluate summer maize (Zea mays L.) yield and N uptake response to soil nitrate-N accumulation, and determine soil nitrate-N levels to meet N demand of high yield maize production in the North China Plain (NCP). A total of 1,883 farmers’ fields were investigated and data from 458 no-N plots were analyzed in eight key maize production regions of the NCP from 2000 to 2005. High nitrate-N accumulation (≥172 kg N ha−1) was observed in the top (0–90 cm) and deep (90–180 cm) soil layer with farmers’ N practice during maize growing season. Across all 458 no-N plots, maize grain yield and N uptake response to initial soil nitrate-N content could be simulated by a linear plus plateau model, and calculated minimal pre-planting soil nitrate-N content for maximum grain yield and N uptake was 180 and 186 kg N ha−1, respectively, under no-N application conditions. Economically optimum N rate (EONR) decreased linearly with increasing pre-planting soil nitrate-N content (r 2 = 0.894), and 1 kg soil nitrate-N ha−1 was equivalent to 1.23 kg fertilizer-N ha−1 for maize production. Residual soil nitrate-N content after maize harvest increased exponentially with increasing N fertilizer rate (P < 0.001), and average residual soil nitrate-N content at the EONR was 87 kg N ha−1 with a range from 66 to 118 kg N ha−1. We conclude that soil nitrate-N content in the top 90 cm of the soil profile should be maintained within the range of 87–180 kg N ha−1 for high yield maize production. The upper limit of these levels would be reduce if N fertilizer was applied during maize growing season.  相似文献   

5.
The benefit of planted fallow with legume cover crops may be limited on P deficient soil. A trial was conducted at two P deficient sites in northern Nigeria to test the hypothesis that application of P to legume cover crop fallow can substitute for N application to subsequent maize. Mainplots consisted of leguminous fallows followed by unfertilized maize, or native (mostly grass) fallows followed by maize with 0 or 40 kg N ha−1 (Kaduna) and 0, 30 or 60 kg N ha−1 (Bauchi). Three rates of P (0, 9, and 18 kg ha−1) were applied to fallow sub-plots as single superphosphate. In the first year, dry matter accumulation of lablab (Lablab purpureus) responded to P application, while mucuna (Mucuna cochinchinensis) dry matter did not. Lablab mulch dry matter during the dry season was significantly increased by previous season P application while mucuna was not. Previous fallow vegetation was a significant factor for maize growth in the second year but the interaction with P applied to the fallow was not significant at P < 0.05. Substantial and similar yield increases were achieved with application of N fertilizer to maize and from application of 9 kg P ha−1 to previous lablab. Depending on local economic circumstances, a good use of expensive inorganic fertilizer might be to apply P sources to cover crop legumes to profit from additional N benefits as well as residual effects of applied P. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
A 19-year field experiment on a Mollisol agroecosystem was carried out to study the productivity of a wheat-maize-soybean rotation and the changes in soil carbon and nutrient status in response to different fertiliser applications in Northeast China. The experiment consisted of seven fertiliser treatments: (1) unfertilised control, (2) annual application of P and K fertilisers, (3) N and K fertilisers, (4) N and P fertilisers, (5) N, P and K fertilisers, (6) N, K and second level P fertilisers, and (7) N, P and second level K fertilisers. Without fertiliser, the Mollisols could support an average yield of 1.88 t ha−1 for wheat, 3.89 t ha−1 for maize and 2.12 t ha−1 for soybean, compared to yields of 3.20, 9.30 and 2.45 t ha−1 respectively for wheat, maize and soybean if the crop nutrient demands were met. At the potential yield level, the N, P and K removal by wheat are 79 kg N ha−1, 15 kg P ha−1, and 53 kg K ha−1, by maize are 207 kg N ha−1, 47 kg P ha−1, and 180 kg K ha−1, by soybean are 174 kg N ha−1, 18 kg P ha−1, and 55 kg K ha−1. Crop yield, change in soil organic carbon (SOC), and the total and available nutrient status were used to evaluate the fertility of this soil over different time periods. This study showed that a fertiliser strategy that was able to maintain yields in the short term (19 years) would not maintain the long term fertility of these soils. Although organic carbon levels did not rise to the level of virgin soil in any treatment, a combination of N, P and K fertiliser that approximated crop export was required to stabilise SOC and prevent a decline in the total store of soil nutrients.  相似文献   

7.
In degraded soils, establishment of soil-improving legumes can be problematic and requires investment of labour and other resources. We investigated various aspects of managing herbaceous legumes in farmers’ fields in Bukoba District, Tanzania. Biomass and N accumulation by Crotalaria grahamiana was 1.1 Mg ha−1 and 34 kg N ha−1 when established without farmyard manure (FYM) and 3.0 Mg ha−1 and 95 kg N ha−1 when established with 2 Mg FYM ha−1, and incorporation of the biomass gave an increment of 700 kg ha−1 of grain in the subsequent maize crop. Maize grain yield at different application rates of Tephrosia candida residues ranged from 1.4 to 3.3 Mg ha−1 and from 2.0 to 2.8 Mg ha−1 in the high and low rainfall zone, respectively. Application of tephrosia biomass at a rate of 2 Mg ha−1 had no significant effect on maize yield whereas rates of 4, 6 and 8 Mg ha−1 gave comparable yields. Apparent N recovery efficiencies at all rates of tephrosia residues were maximally 27 and 13% for the high and low rainfall zones, respectively. Mulching with Mucuna pruriens suppressed weeds by 49 and 68% and increased maize yield by 57 and 103% compared with the weedy fallow in the respective zones. Incorporated residues had a weaker effect on suppressing weeds and poor labour productivity (2 l and 36 kg grain person-day−1) compared with mulched residues (32 and 52 kg grain person-day−1) in the high and low rainfall zone, respectively. These results indicate that if well managed, legume residues have the potential to increase yields of subsequent maize crops on degraded soils.  相似文献   

8.
Nitrogen (N) rhizodeposition by grain legumes such as soybean is potentially a large but neglected source of N in cropping systems of Sub-Saharan Africa. Field studies were conducted to measure soybean N rhizodeposition in two environments of the Guinean savannah of Nigeria using 15N leaf labelling techniques. The first site was located in Ibadan in the humid derived savannah. The second site was in Zaria in the drier Northern Guinean savannah. Soybean N rhizodeposition in the top 0.30 m of soil varied from 7.5 kg ha−1 on a diseased crop in Ibadan to 33 kg ha−1 in Zaria. More than two-thirds of soybean belowground N was contained in the rhizodeposits at crop physiological maturity, while the rest was found in the recoverable roots. Belowground plant-derived N was found to constitute 16–23% of the total soybean N. Taking rhizodeposited pools into account led to N budgets close to zero when all residues were removed. If residues were left in the field or recycled as manure after being fed to steers, soybean cultivation led to positive N budgets of up to +95 kg N ha−1. The role and potential of grain legumes as N purveyors have been underestimated in the past by neglecting the N contained in their rhizodeposits.  相似文献   

9.
Understanding mulching influences on nitrogen (N) activities in soil is important for developing N management strategies in dryland. A 3 year field experiment was conducted in the Loess Plateau of China to investigate the effects of mulching, N fertilizer application rate and plant density on winter wheat yield, N uptake by wheat and residual soil nitrate in a winter wheat-fallow system. The split plot design included four mulching methods (CK, no mulch; SM, straw mulch; FM, plastic film mulch; CM, combined mulch with plastic film and straw) as main plot treatments. Three N fertilizer rates (N0, 0 kg N ha−1; N120, 120 kg N ha−1; N240, 240 kg N ha−1) were sub-plot treatments and two wheat sowing densities (LD, low density, seeding rate = 180 kg ha−1; HD, high density, seeding rate = 225 kg ha−1) were sub-subplot treatments. The results showed that wheat yield, N uptake, and N use efficiency (NUE) were higher for FM and CM compared to CK. However, soil nitrate-N contents in the 0–200 cm soil profile were also higher for FM and CM compared to CK after the 3 year experiment. Wheat grain yields were higher for SM compared to CK only when high levels of nitrogen or high planting density were applied. Mulching did not have a significant effect on wheat yield, nitrogen uptake and NUE when soil water content at planting was much high. Wheat yield, N uptake, and residual nitrate in 0–200 cm were significantly higher for N240 compared to N120 and N0. Wheat yield and N uptake were also significantly higher for HD compared to LD. When 0 or 120 kg N ha−1 was applied, HD had more residual nitrate than LD while the reverse was true when 240 kg N ha−1 was applied. After 3 years, residual nitrate-N in 0–200 cm soil averaged 170 kg ha−1, which was equivalent to ~40% of the total N uptake by wheat in the three growing seasons.  相似文献   

10.
A transition period of at least 2 years is required for annual crops before the produce may be certified as organically grown. The purpose of this study was to evaluate the effects of three organic amendments on the yield and quality of wheat (Triticum aestivum L.) and on soil properties during transition to organic production. The organic amendments were composted farmyard manure (FYMC), vermicompost and lantana (Lantana spp. L.) compost applied to soil at four application rates (60 kg N ha−1, 90 kg N ha−1, 120 kg N ha−1 and 150 kg N ha−1). The grain yield of wheat in all the treatments involving organic amendments was markedly lower (36–65% and 23–54% less in the first and second year of transition, respectively) than with the mineral fertilizer treatment. For the organic treatments applied at equivalent N rates, grain yield was higher for FYMC treatment, closely followed by vermicompost. In the first year of transition, protein content of wheat grain was higher (85.9 g kg−1) for mineral fertilizer treatment, whereas, in the second year, there were no significant differences among the mineral fertilizer treatment and the highest application rate (150 kg N ha−1) of three organic amendments. The grain P and K contents were, however, significantly higher for the treatments involving organic amendments than their mineral fertilizer counterpart in both years. Application of organic amendments, irrespective of source and rate, greatly lowered bulk density (1.14–1.25 Mg m−3) and enhanced pH (6.0–6.5) and oxidizable organic carbon (13–18.8 g kg−1) of soil compared with mineral fertilizer treatment after a 2-year transition period. Mineral fertilized plots, however, had higher levels of available N and P than plots with organic amendments. All the treatments involving organic amendments, particularly at higher application rates, enhanced soil microbial activities of dehydrogenase, β-glucosidase, urease and phosphatase compared with the mineral fertilizer and unamended check treatments. We conclude that the application rate of 120 kg N ha−1 and 150 kg N ha−1 of all the three sources of organic amendments improved soil properties. There was, however, a 23–65% reduction in wheat yield during the 2 years of transition to organic production.  相似文献   

11.
Mulching with vegetative materials is a highly beneficial and widely-investigated agro-technique in rainfed areas but the adoption of this practice has been constrained due to non-availability of mulch biomass locally. Live mulching with fast-growing annual green manure legumes like sunnhemp (Crotalaria juncea) or prunings of Leucaena leucocephala grown as hedge rows can be done for moisture conservation as well as nutrient cycling in the maize–wheat cropping system, which is predominantly followed in the high rainfall sub-mountainous region of north-western India. A field experiment was conducted at Selakui, Dehradun during 2000–2004 to study the effect of legume mulching, viz. in situ grown sunnhemp and Leucaena prunings, along with varying N levels, viz. 0, 30, 60 and 90 kg N ha−1 (to maize), and 0, 40 and 80 kg N ha−1 (to wheat) on productivity, soil moisture conservation and soil physico-chemical properties. Intercropped sunnhemp added 0.75–1.45 t dry matter and 21.6–41.3 kg N ha−1 at 30–35 days, while Leucaena twigs added 1.89–4.15 t dry matter and 75.2–161.3 kg N ha−1 at 60–65 days of maize growth. Live mulching with sunnhemp or Leucaena biomass improved soil moisture content at maize harvest (+1.15–1.57%) and crop productivity by 6.8–8.8% over no mulching. Combined use of both the mulching materials was more effective in improving the soil moisture content (+2.08–2.29%) and grain yield (15.1%) over their single application. Response of maize to N fertilizer application was significant up to 90 kg N ha−1, and it was relatively more pronounced under the mulching treatments. Residual effect of mulching on wheat showed an increase in yield of 10.2% with sunnhemp or Leucaena, and 27.9% with sunnhemp + Leucaena. There was an improvement in organic C and total N status of soil, and a decrease in bulk density associated with an increase in infiltration rate due to mulching at the end of 4 cropping cycles. It was concluded that legume mulching is a highly beneficial practice for enhanced moisture and nutrient conservation, leading to increased productivity and soil health of maize–wheat cropping system under Doon valley conditions of north-western India.  相似文献   

12.
The effects of conservation tillage, crop residue and cropping systems on the changes in soil organic matter (SOM) and overall maize–legume production were investigated in western Kenya. The experiment was a split-split plot design with three replicates with crop residue management as main plots, cropping systems as sub-plots and nutrient levels as sub-sub plots. Nitrogen was applied in each treatment at two rates (0 and 60 kg N ha−1). Phosphorus was applied at 60 kg P/ha in all plots except two intercropped plots. Inorganic fertilizer (N and P) showed significant effects on yields with plots receiving 60 kg P ha−1 + 60 kg N ha−1 giving higher yields of 5.23 t ha−1 compared to control plots whose yields were as low as 1.8 t ha−1 during the third season. Crop residues had an additive effect on crop production, soil organic carbon and soil total nitrogen. Crop rotation gave higher yields hence an attractive option to farmers. Long-term studies are needed to show the effects of crop residue, cropping systems and nutrient input on sustainability of SOM and crop productivity.  相似文献   

13.
Based on a consecutive 16-year field trial and meteorological data, the effects of fertilization on the nutrient budget and nitrogen use efficiency in farmland soil under different precipitation years were studied. With no fertilization treatment, the grain yield of maize was 3,520 kg ha−1 (mean yield over 13 years). But the maximum yield increased to 7,470 kg ha−1 when treated with mineral N, P and K fertilizers and recycled manure. The nutrient uptake also increased by twofold to threefold in NPKM treated field compared with that in the control treatment. The highest yields were obtained in years with normal precipitation, despite the different fertilization schemes. The lowest yields were obtained in drought or waterlogging years, which were 44.7–58.5% of the yields in years with normal precipitation. It also appeared that the deficits of N, P and K were greater in the years with proper precipitation than those in arid or flood years, because more production was removed from the field. Soil total N decreased significantly when treated with mineral fertilizer or recycled manure alone. The maximum deficit of soil total N was observed in control treatment (557 kg ha−1) from 1990 to 2005. The N treatment resulted in a significant negative balance of P, due to the high yield of the crop in response to applied N. The application of NP or N to soils resulted in a greater negative K balance than that of the control. The greatest negative balance of total P and available P were obtained under the control and N treatment, and the highest deficit of soil total K and exchangeable K were obtained under NP treatment. We found that the rate of 150 kg N ha−1 year−1 was inadequate for maintaining soil N balance, and amendment of soil with organic source could not stop the loss of soil P and K. The applying rates of 150 kg N ha−1 year−1, 25 kg P ha−1 year−1, and 60 kg K ha−1 year−1 combined with 2–3 t ha−1 organic manure were recommended to maintain soil fertility level. The nitrogen use efficiency (NUE) was greatly improved in the years with proper precipitation and balanced fertilization. Higher NUE and grain yields were achieved under NPK and NPKM treatments in years with normal precipitation. The results clearly demonstrated that both organic and mineral fertilizers were needed to increase crop production, improve NUE and maintain soil fertility level.  相似文献   

14.
To reduce greenhouse gas emissions farmers are being encouraged not to burn sugarcane residues. An experiment was set up in NE Thailand, where sugarcane residues of the last ratoon crop were either burned, surface mulched or incorporated and subsequently the field left fallow or planted to groundnut or soybean. The objectives of the current experiment were to evaluate the residual effects of these treatments during the following new sugarcane crop on (i) microbial and mineral N dynamics, (ii) performance of sugarcane and (iii) effectiveness of recycled legume residues compared to mineral N fertilizer on N use efficiencies, 15N recovery in the system and in soil particle size and density fractions (using 15N labelled legume residues and fertilizer). The millable cane and sugar yield were positively affected by sugarcane residue mulching and incorporation compared to burning suggesting microbial remobilization of previously immobilized N. Residual effects of legumes increased sugarcane tillering and yield (127 and 116 Mg ha−1 for groundnut and soybean, respectively) compared to the fallow treatment without N fertilizer (112 Mg ha−1). Soybean residues of higher C:N ratio (33:1) and lignin content (13%) compared to groundnut residues (21:1 C:N, 5% lignin) decomposed slower and improved N synchrony with cane N demand. This led to a better conservation of residue N in the system with proportionally less 15N losses (15–17%) compared to the large losses from groundnut residues (50–57%) or from mineral N fertilizer (50–63%). 15N recoveries in soil were larger from residues (41–80%) than from fertilizer (30%) at final harvest. Recycled legume residues were able to substitute basal fertilizer N application but not topdressing after 6 months.  相似文献   

15.
After 3 years of different crop rotations in an organic farming experiment on a sandy soil in northwest Germany, spring triticale was cultivated on all plots in the fourth year to investigate residual effects on yield, nitrogen (N) leaching and nutrient status in the soil. Previous crop rotations differed in the way N was supplied, either by farmyard manure (FYM, 100 and 200 kg N ha−1 year−1) or by arable legumes like grass-red clover and field beans, or as a control with no N. Other crops in the rotations were maize, winter triticale and spring barley. Additional plots had a 3-year grass-clover ley, that was ploughed-in for spring triticale in the fourth year. Yields of spring triticale were moderate and largest for ploughed-in grassland leys and grass-red clover and plots that had previously received farmyard manure. The former crop rotation, including grassland break-up, had a significant effect on most yield and environmental parameters like residual soil mineral nitrogen (SMN) and N leaching and on the level of available K in the soil. The single crop harvested in the year before spring triticale had a significant effect on yield parameters of spring triticale, less so on SMN and N leaching in the fourth year and no effect on available nutrients (P, K, Mg) and pH in the soil. We conclude that the effects of arable legumes were rather short lived while ploughing of 3-year grassland leys had a profound influence on mineralization processes and subsequently on yield and N losses.  相似文献   

16.
Identification of a sustainable integrated soil fertility management option in the tropics will not only salvage the degraded soils but also enhances the attainment of the goal of food security. This study was conducted in 2004 and 2005 on a degraded tropical Alfisol in south western Nigeria to evaluate the effect of legume residue, poultry manure and inorganic fertilizers on maize yield, nutrient uptake and soil properties. The treatments consisted of two rates of poultry manure (0 and 5 t ha−1), three rates of N fertilizer (0, 50 and 100 kg N ha−1 applied as urea), three rates of P fertilizer (0, 30 and 60 kg P ha−1 applied as single super phosphate) and two soybean treatments (with or without incorporation of legume residue) in various combinations as a factorial experiment in Randomized Complete Block design with three replicates. Results showed that poultry manure alone led to significant increase in maize yield (60%) and soil organic matter (45%). In contrast, legume residue incorporation gave significantly lower increase in yield (7%) and soil organic matter (11%). However, the combined application of poultry manure and legume incorporation led to 72% increase in maize yield as opposed to 63 and 10% increase recorded when manure alone or legume alone were incorporated, respectively. Optimal maize yield was achieved when manure application was integrated with P fertilizer application. The interaction of P fertilizer and legume incorporation indicated that soil phosphorus and maize P concentration were significantly increased with the application of the P fertilizer and legume incorporation. Hence, the application of P fertilizer alone is most likely to be economical compared with its integration with legume incorporation.  相似文献   

17.
Crop production in sub-Saharan Africa is constrained by numerous factors including frequent droughts and periods of moisture stress, low soil fertility, and restricted access to mineral fertilisers. A 2 year (2005/6 and 2006/7) field study was conducted in Shurugwi district, central Zimbabwe, to determine the effects of different nutrient resources and two tillage practices on the grain yield of maize (Zea mays L.) and soybean (Glycine max (L.) Merr). Six nutrient resource treatments (control, pit-stored manure, leaf litter, anthill soil, mineral fertiliser, mineral fertiliser plus pit-stored manure) were combined with two tillage practices (conventional tillage and post-emergence tied ridging). Basal fertilisation was done with 0 kg ha−1 as control, 240 kg ha−1 PKS fertiliser, 18 t ha−1 manure, 10 t ha−1 manure plus 240 kg ha−1 PKS fertiliser, 35 t ha−1 leaf litter, 52 t ha−1 anthill soil. About 60 kg N/ha was applied to fertiliser only and fertiliser plus manure treatments as top dressing in the form of ammonium nitrate (34.5%N). A split-plot design was used with nutrient resource as the main plot and tillage practice as the subplot, and five farmers’ fields were used as replicates. Grain yield was determined at physiological maturity (140 and 126 days after planting for maize and soybean, respectively) and adjusted to 12.5% moisture content for maize and 11% for soybean. In the first season (2005/06), addition of different nutrient resources under conventional tillage increased (P < 0.05) maize grain yield by 102–450%, with leaf litter and manure plus fertiliser treatments, giving the lowest (551 kg ha−1) and highest (3,032 kg ha−1) increments, respectively, compared to the control. For each treatment, tied-ridging further increased maize grain yield. For example, for leaf litter, tied-ridging further increased grain yield by 96% indicating the importance of integrating nutrient and water management practices in semi-arid areas where moisture stress is frequent. Despite the low rainfall and extended dry spells in the second season, addition of the different nutrient resources still increased yield which was further increased by tied-ridging in most treatments. Besides providing grain, soybean had higher residual effects on the following maize crop compared to Crotalaria gramiana, a green manure. It was concluded that the highest benefits of tied-ridging, in terms of grain yield, were realised when cattle manure was combined with mineral fertiliser, both of which are available to resource-endowed households. Besides marginally increasing yield, leaf litter and anthill which represent resources that can be accessed by very poor households, have a positive effect of the soil chemical environment.  相似文献   

18.
A large amount of nitrogen (N) fertilizers applied to the winter wheat–summer maize double cropping systems in the North China Plain (NCP) contributes largely to N leaching to the groundwater. A series of field experiments were carried out during October 2004 and September 2007 in a lysimeter field to reveal the temporal changes of N leaching losses below 2-m depth from this land system as well as the effects of N fertilizer application rates on N leaching. Four N rates (0, 180, 260, and 360 kg N ha−1 as urea) were applied in the study area. Seasonal leachate volumes were 87 and 72 mm in the first and second maize season, respectively, and 13 and 4 mm during the winter wheat and maize season in the third rotational year, respectively. The average seasonal flow-weighted NO3-N concentrations in leachate for the four N fertilizer application rates ranged from 8.1 to 103.7 mg N l−1, and seasonal flow-weighted dissolved organic nitrogen (DON) concentrations in leachate varied from 0.8 to 6.0 mg N l−1. Total amounts of NO3-N leaching lost throughout the 3 years were in the range of 14.6 to 177.8 kg ha−1 for the four N application rates, corresponding to N leaching losses in the range of 4.0–7.6% of the fertilizers applied. DON losses throughout the 3 years were 1.4, 2.1, 3.6, and 6.3 kg N ha−1 for the four corresponding fertilization rates. The application rate of 180 kg N ha−1 was recommended based on the balance between reducing N leaching and maintaining crop yields. The results indicated that there is a potential risk of N leaching during the winter wheat season, and over-fertilization of chemical N can result in substantial N leaching losses by high-intensity rainfalls in summer.  相似文献   

19.
Environmental benefits associated with reduced rates of nitrogen (N) application, while maintaining economically optimum yields have economic and social benefits. Although N is an indispensable plant nutrient, residual soil N could leach out to contaminate groundwater and surface water resources, particularly in sandy soils. A 2-year field study was conducted in an established bermudagrass (Cynodon dactylon) pasture in the Lower Suwannee Watershed, Florida, to evaluate N application rates on forage yield, forage quality, and nitrate (NO3-N) leaching in rapidly permeable upland sandy soils. Four N application rates (30, 50, 70, and 90 kg N ha−1 harvest−1) corresponding to 0.33, 0.55, 0.77 and IX, respectively, of recommended N rate (90 kg N ha−1 harvest−1) for bermudagrass hay production in Florida were evaluated vis-à-vis an unfertilized (0 N) control. Suction cups were installed near the center of each plot at two depths (30 and 100 cm) to monitor NO3-N leaching. The grass was harvested at 28 days intervals to determine dry matter yield, N uptake, and herbage nutritive value. Nitrogen application at the recommended rate produced the greatest total dry matter yield (~18.4 Mg ha−1 year−1), but a modeled economically optimum N rate of ~57 kg N ha−1 harvest−1 (~60% of the recommended N rate) projected an average dry matter yield of ~17.3 Mg ha−1 year−1, which represents >90% of the observed maximum yield. Nitrogen application increased nutritive quality of the grass, but increases in N application rate above 30 kg N ha−1 did not result in significant increases in in vitro digestible organic matter concentration, and tissue crude protein was not significant above 50 kg N ha−1. Across the sampling period, treatments with N rates ≤50 kg N ha−1 harvest−1 had leachate NO3-N concentration below the maximum contaminant limit of <10 mg l−1. Conversely, applying N at rates ≥70 kg N ha−1 harvest−1 resulted in leachate N concentration that exceeded the maximum contaminant limit, and suggest high risk of impacting groundwater quality, if such rates are applied to soils with coarse (sand) textures. The study demonstrates that recommendation of a single N application rate may not be appropriate under all agro-climatic conditions and, thus, a site-specific evaluation of best N management strategy is critical.  相似文献   

20.
Development of a sustainable and environment friendly crop production system depends on identifying effective strategies for the management of tillage and postharvest crop residues. Three-year (2004–2007) field study was initiated on two soil types to evaluate the effect of straw management (burning, incorporation and surface mulch) and tillage (conventional tillage and zero tillage) before sowing wheat and four nitrogen rates (0, 90, 120 and 150 kg N ha−1) on crop yields, N use efficiency, and soil fertility in the northwestern India. Effect of tillage and straw management on nitrogen transformation in soils was investigated in a laboratory incubation study. In sandy loam, grain yield of wheat with straw mulch-zero-till (ZT) was 7% higher compared to when residues were burnt-ZT but it was similar to straw burnt-conventional till (CT), averaged across 3 years. In silt loam, grain yield of wheat with straw mulch-ZT was 4.4% higher compared to straw incorporated-CT, but it was similar to straw burnt-CT. Response to N application was generally observed up to 150 kg N ha−1 except in 2004–2005 on sandy loam where N response was observed up to 120 kg N ha−1, irrespective of straw and tillage treatments. In sandy loam, RE was lower (49%) for straw burnt-ZT than in other treatments (54–56%). In silt loam, RE was higher in straw mulch-ZT compared with straw incorporation-CT (65 vs. 58%). In sandy loam, AE was higher in straw burnt-CT and straw mulch-ZT compared with the other treatments (19.2 vs. 16.9 kg grain kg−1 N applied). In silt loam, AE was lower in straw incorporation-CT than in other treatments (16.0 vs. 17.6 kg grain kg−1 N applied). Rice yield and N uptake were not influenced by straw and tillage management treatments applied to the preceding wheat. Recycling of rice residue (incorporation and surface mulch) compared with straw burning increased soil organic carbon and the availability of soil P and K. There was more carbon sequestration in rice straw mulch with zero tillage (25%) than in straw incorporation with conventional tillage (17%). Soil N mineralization at 45 days after incubation was 15–25% higher in straw retention plots compared with on straw burnt plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号