首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, gas–liquid two-phase flow in a parallel square minichannel system oriented horizontally and at an incline is studied under operating conditions relevant to fuel cell operations. Flow mal-distribution in parallel channels occurs at low gas and liquid flow rates. In general, high superficial gas velocities are required to ensure even flow distribution, and the minimum gas flow rates required to achieve even distribution depend on the liquid flow rates, channel orientation and experimental procedures. As the inclination angle is increased, a higher gas flow rate is required to ensure even gas–liquid flow distribution while flow channels inclined downward seems to help in improving the even flow distribution. The presence of flow hysteresis phenomena indicate that multiple flow distributions exist at the same given flow conditions when the gas flow rates are varied in ascending and descending manners. Flow mal-distribution and flow hysteresis are directly linked with flow stability. More specifically, the actual gas and liquid distribution in parallel channels is determined by the stability of mathematical solutions of mass and momentum balance equations and also the flow history. For the first time, the present work investigates flow distributions in fuel cell flow fields by accounting for two-phase flow conditions. In addition, a novel approach is introduced to ensure flow distributions and their stability through contour construction of isobars where unstable flow region can be identified, which can be used in the design of parallel channel flow fields, especially for fuel cells.  相似文献   

2.
Jixin Chen   《Journal of power sources》2010,195(4):1122-1129
In this study, the air–water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells.  相似文献   

3.
In the present work, instantaneous gas flow rates in each of two parallel channels of gas-liquid two-phase flow systems were investigated through measurements of the pressure drop across the entrance region. Liquid flow rates in two branches were pre-determined through liquid injection independently into each channel. Experiments were conducted in two different manners, i.e., the gas flow rate was varied in both ascending and descending paths. Flow hysteresis was observed in both gas flow rate distributions and the overall pressure drop of two-phase flow systems. Effects of liquid flow rates on gas flow distributions were examined experimentally. The presence of flow hysteresis was found to be associated with different flow patterns at different combinations of gas and liquid flow rates and flow instability conditions. A new and simple method was developed to predict gas flow distributions based on flow regime-specific pressure drop models for different experimental approaches and flow patterns. In particular, two different two-phase pressure drop models were used for slug flow and annular flow, separately. Good agreement was achieved between theoretical predictions and our experimental data. The developed new method can be potentially applied to predict gas flow distributions in parallel channels for fuel cells.  相似文献   

4.
Water management in PEM fuel cells has received extensive attention due to its key role in fuel cell performance. The unavoidable water, from humidified gas streams and electrochemical reaction, leads to gas-liquid two-phase flow in the flow channels of fuel cells. The presence of two-phase flow increases the complexity in water management in PEM fuel cells, which remains a challenging hurdle in the commercialization of this technology. Unique water emergence from the gas diffusion layer, which is different from conventional gas-liquid two-phase flow where water is introduced from the inlet together with the gas, leads to different gas-liquid flow behaviors, including pressure drop, flow pattern, and liquid holdup along flow field channels. These parameters are critical in flow field design and fuel cell operation and therefore two-phase flow has received increasing attention in recent years. This review emphasizes gas-liquid two-phase flow in minichannels or microchannels related to PEM fuel cell applications. In situ and ex situ experimental setups have been utilized to visualize and quantify two-phase flow phenomena in terms of flow regime maps, flow maldistribution, and pressure drop measurements. Work should continue to make the results more relevant for operating PEM fuel cells. Numerical simulations have progressed greatly, but conditions relevant to the length scales and time scales experienced by an operating fuel cell have not been realized. Several mitigation strategies exist to deal with two-phase flow, but often at the expense of overall cell performance due to parasitic power losses. Thus, experimentation and simulation must continue to progress in order to develop a full understanding of two-phase flow phenomena so that meaningful mitigation strategies can be implemented.  相似文献   

5.
A general theoretical model based on mass and momentum conservation has been developed to solve the flow distribution and the pressure drop in Z-type configurations of fuel cells. While existing models neglected either friction term or inertial term, the present model takes both of them into account. The governing equation of the Z-type arrangement was formulated to an inhomogeneous version of the U-type one. Thus, main existing models have been unified to one theoretical framework. The analytical solutions are fully explicit that they are easily used to predict pressure drop and flow distribution for Z-type layers or stacks and provide easy-to-use design guidance under a wide variety of combination of flow conditions and geometrical parameters to investigate the interactions among structures, operating conditions and manufacturing tolerance and to minimize the impact on stack operability. The results can also be used for the design guidance of flow distribution and pressure drop in other manifold systems, such as plate heat exchanges, plate solar collectors, distributors of fluidised bed and boiler headers.  相似文献   

6.
This work reports on the performance of a single PEM fuel cell using symmetric flow patterns as gas delivery channels. Three flow patterns, two symmetric and one serpentine, are taken from the literature on cooling of electronics and they are implemented in a computational model as gas flow channels in the anode and cathode side of a PEMFC. A commercial CFD code was used to solve the physics involved in a fuel cell namely: the flow field, the mass conservation, the energy conservation, the species transport, and the electric/ionic fields under the assumptions of steady state and single phase. An important feature of the current modeling efforts is the analysis of the main irreversibilities at different current densities showing the main energy dissipation phenomena in each cell design. Also, the hydraulic performance of the flow patterns was studied by evaluating the pressure drop and pumping power. The first part of this work reveals the advantages of using a serpentine pattern over the base symmetric distributors. The second part is an optimization of the symmetric patterns using the entropy minimization criteria. Such an optimization led to the creation of a flow structure that promotes an improved performance from the point of view of power generation, uniformity of current density, and low pumping power.  相似文献   

7.
It is the major challenge to transform a laboratory scale production of fuel cells to an industrial scale one and to meet the requirements of throughput, operating life, low cost, reliability and high efficiency in R&D of fuel cells. Designs of uniform flow distribution are central to upscale fuel cells as well as to tackle critical issues of water, thermal and current management. However, in spite of our growing appreciation of designs of uniform flow distribution, there is little or no practical solution to ensure a uniform flow distribution across channels of a cell and cells of a stack in designs of flow fields. The purpose of this paper was to develop a discrete approach to find a design that met requirements of flow distribution uniformity and pressure drop in parallel channel configurations with Z-type arrangement through adjustments of configurations and normalised structural parameters. Variation of the frictional and the momentum coefficients with flow velocities was incorporated into the flow distribution equation to improve modelling accuracy. We also developed procedure, measures and guideline for the designs of flow distribution and pressure drop to bridge knowledge gap between the generalised theory and industrial applications. The results showed that the present approach could provide the practical guideline to evaluate quantitatively performance of different layout configurations, structures, and flow conditions.  相似文献   

8.
This paper reports numerical and experimental investigation of stratified gas–liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier–Stokes equations (RANS) with the kω turbulence model for a fully developed stratified gas–liquid two-phase flow are solved by using the finite element method. A smooth interface surface is assumed without considering the effects of the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the non-linear equations. The Newton–Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. Favorable comparison of the numerical results with available experimental results indicates that the kω model can be applied for the numerical simulation of stratified gas–liquid two-phase flow.  相似文献   

9.
A microfluidic device is employed to emulate water droplet emergence from a porous electrode and slug formation in the gas flow channel of a PEM fuel cell. Liquid water emerges from a 50 μm pore forming a droplet; the droplet grows to span the entire cross-section of a microchannel and transitions into a slug which detaches and is swept downstream. Droplet growth, slug formation, detachment, and motion are analyzed using high-speed video images and pressure-time traces. Slug volume is controlled primarily by channel geometry, interfacial forces, and gravity. As water slugs move downstream, they leave residual micro-droplets that act as nucleation sites for the next droplet-to-slug transition. Residual liquid in the form of micro-droplets results in a significant decrease in slug volume between the very first slug formed in an initially dry channel and the ultimate “steady-state” slug. A physics-based model is presented to predict slug volumes and pressure drops for slug detachment and motion.  相似文献   

10.
A simulated cathode flow channel experiment system was set up based on the gas flow rate and water flow rate in the PEM fuel cell. With the assistance of the visualization system, high-sensitivity double parallel conductance probes flow regime inspecting technique was adopted successfully in the experiment system to inspect the flow regime of the gas–liquid two-phase flow in the PEM fuel cell. The research results show that the double parallel conductance probes inspecting system and the flow regime image system for the gas–liquid two-phase flow in the PEM fuel cell simulated channel both can judge the slug flow and annular flow in it, and the double parallel conductance probes flow regime inspecting system can divide the annular flow into three subtypes. The main probes inspecting system and the assistant image system validate reciprocally, which enhances the experimental veracity. The typical flow regimes of the PEM fuel cell simulated channel include slug flow, annular flow with big water film wave, annular flow with small water film wave and annular flow without water film wave. With the increase of the liquid superficial velocity, the frequencies of liquid slug and wave of liquid film increase. The flow regime map in the flow channel of the PEM fuel cell was developed. The flow regime of the gas–liquid two-phase flow in a PEM fuel cell in different operating conditions can be forecasted with this map. With the PEM fuel cell operating condition in this study, the flow regimes of gas–liquid two-phase flow for different cases are all annular flow with small water film wave, and the liquid film waves more with bigger current density. With the location closer to the channel outlet, the liquid film waves are more for the same current density.  相似文献   

11.
Understanding the effect of two-phase flow in the components of proton exchange membrane fuel cells (PEMFCs) is crucial to water management and subsequently to their performance. The local water saturation in the gas diffusion layer (GDL) and reactant channels influences the hydration of the membrane which has a direct effect on the PEMFC performance. Mass transport resistance includes contributions from both the GDL and reactant channels, as well as the interface between the aforementioned components. Droplet–channel wall interaction, water area coverage ratio on the GDL, oxygen transport resistance at the GDL–channel interface, and two-phase pressure drop in the channels are interlinked. This study explores each factor individually and presents a comprehensive perspective on our current understanding of the two-phase transport characteristics in the PEMFC reactant channels.  相似文献   

12.
Numerical analyses are presented to explain the effect of drop size and contact angle on local pressures inside small channels. These pressures and channel characteristics are of interest when water condenses in the gas channels of Proton Exchange Membrane Fuel Cells and hence the study uses Reynolds numbers consistent with as typical utilization of reacting gases in 200 cm2 flow fields (i.e., 200 < Re < 1500 and stoichiometries of 1.2–2.0 at 1.0 A/cm2). The analyses were performed using three-dimensional computational fluid dynamic techniques and the results show that pressure drops are minimal until the blockage was greater than 50%. As blockage increased further, due to larger drops or increased hydrophobicity, pressure drop increased. The results of a stagnant drop are supported by visualization experiments, which show minimal distortion of the drop for these low flow rates, small ratios, and hydrophobic contact angles. Proper scaling parameters and design criteria for microchannels validation experiments are presented.  相似文献   

13.
In this study, the relationship between the pressure drop on the channels due to the methanol flow and the geometry of the flow channels on the anode side of a direct methanol fuel cell (DMFC) has been investigated. Parallel type channels are used as flow channels. The active area of the fuel cell is 5 × 5 cm2. The system consists of channels that are optimally placed in the active area, with channel widths and distance of the channels kept constant. Combinations of 1, 1.5, 2, 2.5, 3 mm measurements were used for flow channel width and distance between channels. The ratio of the area created by the prepared geometries to the active area (percentage of contact area) is defined as a new parameter. The main motivation of this study is to be able to determine the effect of the geometric measurements of the designed flow channels on the intra-channel pressure drop by statistical method. There was a statistically significant difference between the flow channel widths and the distance between the channels and the pressure. Among the selected parameters, the effect of the channel width on the pressure drop was highest but it had a statistically moderate relationship. However, there was no significant relationship between the distance between channels and the pressure drop.  相似文献   

14.
This work presents an experimental investigation on the preferential accumulation of liquid water in the channels of a multiple serpentine PEMFC with 50 cm2 active area. Neutron imaging was used for visualizing the liquid water distribution during the cell operation for a wide range of operating conditions. Liquid water accumulation in the cathode channels was observed for most of the operating conditions, with a preferential accumulation in certain channels of the flow field. A statistical analysis was performed in order to determine the main characteristics of this accumulation (i.e. channel number and degree of accumulation). As cathode channels were positioned in vertical direction, it was found that gravity effects had an important influence in the accumulation, as well as the relative position of the channel with respect to the inlet and outlet locations. The gas flow direction had also a major impact on the water accumulation within the channels, with significantly more water accumulated in channels with upwards gas flow.  相似文献   

15.
The focus of this paper is to study the flow crossover between two adjacent flow channels in a proton exchange membrane (PEM) fuel cell with serpentine flow field design in bipolar plates. The effect of gas diffusion layer (GDL) deformation on the flow crossover due to the compression in a fuel cell assembly process is particularly investigated. A three-dimensional structural mechanics model is created to study the GDL deformation under the assembly compression. A three-dimensional PEM fuel cell numerical model is developed in the aforementioned deformed domain to study the flow crossover between the adjacent channels in the presence of the GDL intrusion. The models are solved in COMSOL Multiphysics—a finite element-based commercial software package. The pressure, velocity, oxygen mass fraction and local current density distribution are presented. A parametric study is conducted to quantitatively investigate the effect of the GDL’s transport related parameters such as porosity and permeability on the flow crossover between the adjacent flow channels. The polarization curves are also examined with and without the assembly compression considered. It is found that the compression effect is evident in the high current density region. Without considering the assembly compression, the fuel cell model tends to over-predict the fuel cell’s performance. The proposed method to simulate the crossover with the deformed computational domain is more accurate in predicting the overall performance.  相似文献   

16.
This paper is the first portion of a two-part study concerning the flow boiling of liquid nitrogen in the micro-tubes with the diameters of 0.531, 0.834, 1.042 and 1.931 mm. The contents mainly include the onset of nucleate boiling (ONB), two-phase flow instability and two-phase flow pressure drop. At ONB, mass flux drops suddenly while pressure drop increases, and apparent wall temperature hysteresis in the range of 1.0–5.0 K occurs. Modified Thom model can predict the wall superheat and heat flux at ONB. Moreover, stable long-period (50–60 s) and large-amplitude oscillations of mass flux, pressure drop and wall temperatures are observed at ONB for the 1.042 and 1.931 mm micro-tubes. Block phenomenon at ONB is also observed in the cases of high mass flux. The regions for the oscillations, block and stable flow boiling are classified. A physical model of vapor patch coalesced at the outlet is proposed to explain the ONB oscillations and block. Vapor generation caused by the flash evaporation is so large that it should be taken into account to precisely depict the variation of mass quality along the micro-tube. The adiabatic and diabatic two-phase flow pressure drop characteristics in micro-tubes are investigated and compared with four models including homogeneous model and three classical separated flow models. Contrary to the conventional channels, homogeneous model yields better prediction than three separated flow models. It can be explained by the fact that the density ratio of liquid to vapor for nitrogen is comparatively small, and the liquid and vapor phases may mix well in micro-tube at high mass flux due to small viscosity of liquid nitrogen, which leads to a more homogeneous flow. Part II of this study will focus on the heat transfer characteristics and critical heat flux (CHF) of flow boiling of liquid nitrogen in micro-tubes.  相似文献   

17.
Liquid water transport in a polymer electrolyte fuel cell (PEFC) is a major issue for automotive applications. Mist flow with tiny droplets suspended in gas has been commonly assumed for channel flow while two-phase flow has been modeled in other cell components. However, experimental studies have found that two-phase flow in the channels has a profound effect on PEFC performance, stability and durability. Therefore, a complete two-phase flow model is developed in this work for PEFC including two-phase flow in both anode and cathode channels. The model is validated against experimental data of the wetted area ratio and pressure drop in the cathode side. Due to the intrusion of soft gas diffusion layer (GDL) material in the channels, flow resistance is higher in some channels than in others. The resulting flow maldistribution among PEFC channels is of great concern because non-uniform distributions of fuel and oxidizer result in non-uniform reaction rates and thus adversely affect PEFC performance and durability. The two-phase flow maldistribution among the parallel channels in an operating PEFC is explored in detail.  相似文献   

18.
Two-phase flow pressure drop hysteresis was studied in a non-operational PEM fuel cell to understand the effect of stoichiometry, GDL characteristics, operating range, and initial conditions (dry vs. flooded) for flow conditions typical of an operating fuel cell. This hysteresis is noted when the air and water flow rates are increased and then decreased along the same path, exhibiting different pressure drops. When starting from dry conditions, the descending pressure drop tended to be higher than the ascending pressure drop at lower simulated current densities. The hysteresis effect was noted for stoichiometries of 1-4 and was eliminated at a stoichiometry of 5. It was found that the hysteresis was greater when water breakthrough occurred at higher simulated current densities, which is a function of GDL properties. The operating range had to reach a critical simulated current density (800 mA cm−2 in this case) between the ascending and descending approach to create a pressure drop hysteresis zone. The descending step size does not change the size of the hysteresis effect, but a larger step size leads to lower fluctuations in the pressure drop signal. An initially flooded condition also showed hysteresis, but the ascending approach tended to have a higher pressure drop than the descending approach.  相似文献   

19.
In this study the air–water two-phase flow in a tapered channel of a PEMFC was numerically simulated using the volume of fluid (VOF) method. In particular, a 3D mathematical model of the fuel cell flow channel was used to obtain a reliable evaluation of the fuel cell performance for different taper angles and different temperatures and to calculate the total amount of water produced. This information was then used as boundary conditions to simulate the two-phase flow in the cell channel through a 2D VOF model. Typical operating conditions were assigned and the numerical mesh was constructed to represent the real fuel cell configuration. The results show that tapering the channel downstream enhances the water removal due to increased airflow velocity. In the rectangular channel no film formation is noted with a marked predominance of slug flow. In contrast, as the taper angle is increased the predominant two-phase flow pattern is film flow. Finally many contact angles have been used to simulate the effect of the hydrophobicity of a GDL surface on the motion of the water. As the hydrophobicity of a GDL surface is decreased the presence of film is more evident even for less tapered channels.  相似文献   

20.
The water management of proton-exchange membrane fuel cell (PEMFC) has a major impact on the performance of the cell system. In order to investigate the influence of air velocity and wettability on the whole process during penetration of liquid water, a generalized two-dimensional model in conjunction with the volume of fluid (VOF) method was used to simulate the whole processes from gas diffusion layer (GDL) to gas channel (GC). The results show that the wettability of the medium plays a significant role than flow rate for the penetration of liquid water in the GDL. It is shown that favorable hydrophobicity and high air velocity in GC is helpful to remove liquid droplets on the GDL surface. By contrast, the stable droplets spacing on GDL surface is more concentrated and the percentage of liquid area is more extensive under the hydrophilic and low-velocity case, which would aggravate the liquid water and hard to remove from the GDL surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号