共查询到20条相似文献,搜索用时 62 毫秒
1.
本文提出了一种在隐含马尔可夫模型(HMM)框架下建立的识别脱机手写汉字的方法,介绍了以HMM对脱机手写汉字进行建模、识别的整个过程,并给出了实验结果对国标一级3755个汉字的识别率,在两种测试集上分别达到96.4%和91.5%. 相似文献
2.
3.
杨玲 《计算机光盘软件与应用》2010,(14)
脱机手写体汉字识别是当前OCR技术研究的热点之一.本文提出了一种用于手写体汉字识别的多特征多分类器集成的系统模型,并利用Matlab工具箱对50个汉字5000个样本进行了初步仿真实验,实验表明该模型是十分可行和有效的. 相似文献
4.
5.
针对手写阿拉伯单词书写连笔,且相似词较多的特点,该文提出一种新的脱机手写文字识别算法。该算法以固定组件为成分拆分阿拉伯单词,构建自组件特征至单词类别的加权贝叶斯推理模型。算法结合单词组件分割、多级混合式组件识别、组件加权系数估计等,计算单词类别的后验概率并得到单词识别结果。在IFN/ENIT库上的实验,获得了90.03%的单词识别率,证实组件分解对笔画连写具有鲁棒性,组件识别能提高相似词的辨别能力,而且该算法所需训练类别少,易向大词汇量识别扩展。 相似文献
6.
用于脱机手写数字识别的隐马尔可夫模型 总被引:9,自引:0,他引:9
将隐马尔可夫模型(HMM)用于脱机手写数字识别中,系统如何建模是一个值得研究的问题.在考虑手写数字自身特点及特征抽取的基础上,对HMM模型的训练方法及模型参数的选取进行了研究,以提高系统识别率.在银行票据OCR的应用中,与基于神经网络的方法结合使用,使得整张票据的拒识率降低了3%,明显提高了银行票据OCR系统的性能. 相似文献
7.
8.
在脱机手写汉字识别中,笔画形变是造成识别率下降的主要原因,减少笔画形变的影响是提高脱机手写汉字识别率的关键。针对上述问题,提出了最优采样特征。该特征以目前被广泛应用的方向线素特征为基础,在一定的约束条件下,通过移动采样点的位置,可以适应笔画的形变。从而减少特征的类内方差,提高特征的可分性,改进了识别性能。通过在THCHR样本集上进行实验,并对最优采样特征和方向线素特征的实验结果进行比较,验证了最优采样特征的识别率优于方向线索特征。 相似文献
9.
由于字形的复杂多变,脱机手写汉字的识别一直是模式识别的难题,深度卷积神经网络的发展为其提供了一种直接有效的解决方案。研究基于inceptions 结构神经网络的脱机手写汉字识别,提出了一种inception结构的改进方法,它具有结构更加简单、网络深度扩展更加容易、需要的训练参数量更少的优点。该方法在数据集CISIA-HWDB1.1 上进行了实验验证,采用随机梯度下降优化算法,模型达到了96.95%的平均准确率。实验结果表明,使用改进的inception结构在图像分类上具有更好的鲁棒性,更容易扩展到其他应用领域。 相似文献
10.
11.
12.
Off-line cursive script word recognition 总被引:2,自引:0,他引:2
Bozinovic R.M. Srihari S.N. 《IEEE transactions on pattern analysis and machine intelligence》1989,11(1):68-83
13.
14.
In this paper, a new method for modeling and recognizing cursive words with hidden Markov models (HMM) is presented. In the proposed method, a sequence of thin fixed-width vertical frames are extracted from the image, capturing the local features of the handwriting. By quantizing the feature vectors of each frame, the input word image is represented as a Markov chain of discrete symbols. A handwritten word is regarded as a sequence of characters and optional ligatures. Hence, the ligatures are also explicitly modeled. With this view, an interconnection network of character and ligature HMMs is constructed to model words of indefinite length. This model can ideally describe any form of handwritten words, including discretely spaced words, pure cursive words and unconstrained words of mixed styles. Experiments have been conducted with a standard database to evaluate the performance of the overall scheme. The performance of various search strategies based on the forward and backward score has been compared. Experiments on the use of a preclassifier based on global features show that this approach may be useful for even large-vocabulary recognition tasks. 相似文献
15.
Tong-Hua Su Author Vitae Tian-Wen Zhang Author Vitae Hu-Jie Huang 《Pattern recognition》2009,42(1):167-182
Great challenges are faced in the off-line recognition of realistic Chinese handwriting. This paper presents a segmentation-free strategy based on Hidden Markov Model (HMM) to handle this problem, where character segmentation stage is avoided prior to recognition. Handwritten textlines are first converted to observation sequence by sliding windows. Then embedded Baum-Welch algorithm is adopted to train character HMMs. Finally, best character string maximizing the a posteriori is located through Viterbi algorithm. Experiments are conducted on the HIT-MW database written by more than 780 writers. The results show the feasibility of such systems and reveal apparent complementary capacities between the segmentation-free systems and the segmentation-based ones. 相似文献
16.
17.
18.
19.