首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
2.
Virgin olive oil (VOO) is credited as being one of many healthful components of the Mediterranean diet. Mediterranean populations experience reduced incidence of chronic inflammatory disease states and VOO is readily consumed as part of an everyday dietary pattern. A phenolic compound contained in VOO, named oleocanthal, shares unique perceptual and anti-inflammatory characteristics with Ibuprofen. Over recent years oleocanthal has become a compound of interest in the search for naturally occurring compounds with pharmacological qualities. Subsequent to its discovery and identification, oleocanthal has been reported to exhibit various modes of action in reducing inflammatory related disease, including joint-degenerative disease, neuro-degenerative disease and specific cancers. Therefore, it is postulated that long term consumption of VOO containing oleocanthal may contribute to the health benefits associated with the Mediterranean dietary pattern. The following paper summarizes the current literature on oleocanthal, in terms of its sensory and pharmacological properties, and also discusses the beneficial, health promoting activities of oleocanthal, in the context of the molecular mechanisms within various models of disease.  相似文献   

3.
Nanoemulsions are considered an innovative approach for industrial food applications. The present study explored the potential use of olive‐pomace oil (OPO) for oil‐in‐water (o/w) nanoemulsion preparations and compared the effectiveness of extra virgin olive oil (EVOO) and OPO at nanoemulsion formulations. The ternary‐phase diagrams were constructed and the o/w nanoemulsions properties were evaluated in relation to their composition. The results showed that it is possible to form OPO nanoemulsions using Polysorbate 20 or Polysorbate 40. Nanoemulsions with EVOO and OPO presented desirable properties, in terms of kinetic stability (emulsion stability index % [ESI%]), mean droplet diameter (MDD), polydispersity index (PDI), ζ‐potential, viscosity, and turbidity. EVOO exhibited lower surface and interfacial tension forming nanoemulsions with a high ESI% and a low MDD. However, OPO led to nanoemulsions with a high ESI% but with a higher MDD. It was observed that by increasing the emulsifier concentration the MDD decreased, while increasing the dispersed phase concentration led to a higher MDD and a lower ESI%. Finally, nanoemulsions with the smallest MDD (99.26 ± 4.20 nm) and PDI (0.236 ± 0.010) were formed using Polysorbate 40, which presented lower surface and interfacial tension. Specifically, the nanoemulsion with 6 wt% EVOO and 6 wt% Polysorbate 40 demonstrated an interfacial tension of 51.014 ± 0.919 mN m?1 and an MDD of 99.26 ± 4.20 nm. However, the nanoemulsion with 6 wt% OPO and 8 wt% Polysorbate 20 presented an interfacial tension of 54.308 ± 0.089 mN m?1 and an MDD of 340.5 ± 7.1 nm.  相似文献   

4.
Both monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) play important roles in lipid metabolism, and diets enriched with either of these two fatty acids are associated with decreased cardiovascular risk. Conventional soybean oil (CSO), a common food ingredient, predominantly contains linoleic acid (LA; C18:2), a n-6 PUFA. Recently, a modified soybean oil (MSO) enriched in oleic acid (C18:1), a n-9 MUFA, has been developed, because of its improved chemical stability to oxidation. However, the effect of the different dietary soybean oils on cardiovascular disease remains unknown. To test whether diets rich in CSO versus MSO would attenuate atherosclerosis development, LDL receptor knock-out (LDLR-KO) mice were fed a Western diet enriched in saturated fatty acids (control), or a Western diet supplemented with 5% (w/w) LA-rich CSO or high-oleic MSO for 12 weeks. Both soybean oils contained a similar amount of linolenic acid (C18:3 n-3). The CSO diet decreased plasma lipid levels and the cholesterol content of VLDL and LDL by approximately 18% (p < 0.05), likely from increased hepatic levels of PUFA, which favorably regulated genes involved in cholesterol metabolism. The MSO diet, but not the CSO diet, suppressed atherosclerotic plaque size compared to the Western control diet (Control Western diet: 6.5 ± 0.9%; CSO diet: 6.4 ± 0.7%; MSO diet: 4.0 ± 0.5%) (p < 0.05), independent of plasma lipid level changes. The MSO diet also decreased the ratio of n-6/n-3 PUFA in the liver (Control Western diet: 4.5 ± 0.2; CSO diet: 6.1 ± 0.2; MSO diet: 2.9 ± 0.2) (p < 0.05), which correlated with favorable hepatic gene expression changes in lipid metabolism and markers of systemic inflammation. In conclusion, supplementation of the Western diet with MSO, but not CSO, reduced atherosclerosis development in LDLR-KO mice independent of changes in plasma lipids.  相似文献   

5.
6.
The lipase-catalyzed interesterification of extra virgin olive oil (EVOO) and fully hydrogenated palm oil (FHPO) was studied in a batch reactor operating at 75 °C. The compositions of the semi-solid fat products depend on the reaction conditions and the initial ratio of EVOO to FHPO. The dependence of the quasi-equilibrium product TAG profile on the reaction time was determined for initial weight ratios of EVOO to FHPO from 80:20 to 20:80. Lipozyme TL IM, Lipozyme RM IM and Novozym 435 were employed as biocatalysts. The interesterification reaction was optimized with respect to the type and loading of biocatalyst. Equilibrium was approached in the shortest time with Novozym 435 (80% conversion in 4 h). The chemical, physical, and functional properties of the products were characterized. Appropriate choices of the reaction conditions and the initial ratio of EVOO to FHPO lead to TAG with melting profiles and solid fat contents similar to those of commercial products. Differences were observed in the solid fat contents, melting profiles, and oxidative stabilities of the various interesterified products and also between the indicated properties of each category of product and the corresponding physical blend of the precursor reagents.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号