共查询到20条相似文献,搜索用时 0 毫秒
1.
The current study aims to study the magnetohydrodynamics (MHD) Casson kind nanofluid stream through a permeable medium above a nonlinear extending surface considered along with Darcy-Forchimer relation and chemical reaction. Thermophoresis and Brownian diffusion effects are considered. The MHD effect is used to highlight the physical and thermal properties of the nanofluid. The Keller Box scheme is used to solve the guiding equations numerically. Graphs are plotted for various nondimensional parameters. To justify the method, the used local parameters are calculated and compared with the existing literature. The results specify that a decreasing tendency is observed in the velocity profile for Forchiemer, magnetic, and stretching rate parameters, whereas the opposite tendency is noted for the Casson parameter. On observing temperature profiles, declination is noticed for Casson, thermal slip parameters and raising nature is detected for increasing values of Brownian diffusion, and thermophoresis, radiation parameters. From the results, it is observed that the momentum boundary layer diminishes for a higher inertial influence and the opposing force offered by the porous media to the fluid flow. 相似文献
2.
A numerical computation to analyze the heat and mass transfer mechanism of a magnetohydrodynamic radiative Casson fluid flow over a wedge in the presence of Joule heating, viscous dissipation, and chemical reaction is carried out in this study. The flow-governing partial differential equations are transformed as ordinary differential equations by relevant similarity transformations and subsequently resolved by Runge–Kutta numerical approach with a shooting technique. The characteristics of momentum, thermal, and concentration border layers due to various influencing parameters are graphically outlined and numerically computed by MATLAB software. We present comparative solutions to construe the relative outcomes of Casson fluid versus Newtonian fluid. Computational outcomes of friction factor and Nusselt and Sherwood numbers are tabulated with suitable interpretations. An increase in skin friction values is noted due to an increment in the thermal Grashof number, whereas a decrease is observed due to the chemical reaction parameter. The Casson fluid displays a superior heat transfer mechanism than the Newtonian fluid. Obtained outcomes are in good agreement with the prevailing literature in the limiting case. 相似文献
3.
Present research article investigate the heat and mass transfer characteristics of unsteady magnetohydrodynamic Casson nanofluid flow between two parallel plates under the influence of viscous dissipation and first order homogeneous chemical reaction effects. The impacts of thermophoresis and Brownian motion are accounted in the nanofluid model to disclose the salient features of heat and mass transport phenomena. The present physical problem is examined under the presence of Lorentz forces to investigate the effects of magnetic field. Further, the viscous and Joule dissipation effects are considered to describe the heat transfer process. The non‐Newtonian behaviour of Casson nanofluid is distinguished from those of Newtonian fluids by considering the well‐established rheological Casson fluid model. The two‐dimensional partial differential equations governing the unsteady squeezing flow of Casson nanofluid are coupled and highly nonlinear in nature. Thus, similarity transformations are imposed on the conservation laws to obtain the nonlinear ordinary differential equations. Runge‐Kutta fourth order integration scheme with shooting method and bvp4c techniques have been used to solve the resulting nonlinear flow equations. Numerical results have been obtained and presented in the form of graphs and tables for various values of physical parameters. It is noticed from present investigation that, the concentration field is a decreasing function of thermophoresis parameter. Also, concentration profile enhances with raising Brownian motion parameter. Further, the present numerical results are compared with the analytical and semianalytical results and found to be in good agreement. 相似文献
4.
Ankalagiri Chinna Venkata Ramudu Kempannagari Anantha Kumar Vangala Sugunamma Naramgari Sandeep 《亚洲传热研究》2020,49(8):5020-5037
The foremost objective of the current article is to explore the impact of Brownian motion on magnetohydrodynamic Casson nanofluid flow toward a stretching sheet in the attendance of nonlinear thermal radiation. The combined heat and mass transfer characteristics are investigated. The influence of chemical reaction, nonuniform heat source/sink, Soret, and Dufour is deemed. The convective boundary condition is taken. The appropriate transformations are utilized to transform the flow regulating partial differential equations into dimensionless ordinary differential equations (coupled). The numerical outcomes of the converted nonlinear system are solved by the Runge-Kutta based Shooting procedure. Results indicate that the temperature is an increasing function of both thermophoresis and Brownian motion parameters. The concentration of the fluid and the corresponding boundary layer thickness reduces with an enhancement in Lewis number. 相似文献
5.
In this study, unsteady boundary layer flow with Casson nanofluid within the sight of chemical reaction toward a stretching sheet has been analyzed mathematically. The fundamental motivation behind the present examination is to research the influence of different fluid parameters, in particular, Casson fluid , thermophoresis , magnetohydrodynamic , Brownian movement , Prandtl numberty, unsteadiness parameter , chemical reaction parameter , and Schmidt number on nanoparticle concentration, temperature, and velocity distribution. The shooting procedure has been adopted to solve transformed equations with the assistance of Runge–Kutta Fehlberg technique. The impact of different controlling fluid parameters on flow, heat, and mass transportation are depicted in tabular form and are shown graphically. Additionally, values of skin friction coefficient, Nusselt number, and Sherwood number are depicted via tables. Present consequences of the investigation for Nusselt number are related with existing results in writing by taking and where results are finding by utilization of MATLAB programming. Findings of current research help in controlling the rate of heat and mass aspects to make the desired quality of final product aiding manufacturing companies and industrial areas. 相似文献
6.
This article presents the two-dimensional mixed convective MHD unsteady stagnation-point flow with heat and mass transfer on chemically reactive Casson fluid towards a vertical stretching surface. This fluid flow model is influenced by the induced magnetic field, thermal radiation, viscous dissipation, heat absorption, and Soret effect with convective boundary conditions and solved numerically by shooting technique. The calculations are accomplished by MATLAB bvp4c. The velocity, induced magnetic field, temperature, and concentration distributions are displayed by graphs for pertinent influential parameters. The numerical results for skin friction coefficient, rate of heat, and mass transfer are analyzed via tables for different influential parameters for both assisting and opposing flows. The results reveal that the enhancement of the unsteadiness parameter diminishes velocity and induced magnetic field but it rises temperature and concentration distributions. Moreover, higher values of magnetic Prandtl number enhance Nusselt number and skin friction coefficient, but it has the opposite impact on Sherwood number. We observe that the amplitude is higher in assisting flow compared to opposing flow for skin friction coefficient and Nusselt number whereas opposite trends are noticed for Sherwood number. Our model will be applicable to various magnetohydrodynamic devices and medical sciences. 相似文献
7.
Kemparaju M. Chandrashekar Mahantesh M. Nandeppanavar Raveendra Nagaraj Sreelatha Madikiri 《亚洲传热研究》2022,51(2):2003-2019
An analysis is done of the effect of Richardson and Biot number on double-diffusive mixed convective Casson fluid stream with viscous dissipation on warmth and mass stream with convective limit conditions and radiating vertical plate. The R-K method with shooting procedure is used to solve the transformed equations mathematically. The accuracy of the numerical procedure has been validated through a comparison of the current work compared with prior available results. The sheer surface stress, Nusselt, and Sherwood number are increased with enhancement in Prandtl number. The Biot number Βi > 0.1 is investigated and increasing Biot number is observed to enhance the friction coefficient, Nusselt, and Sherwood number are increased. The influence of pertinent constraints on distinct flow parameters is determined and analyzed through tables and graphs. 相似文献
8.
Gangadhar Kotha Venkata Subba Rao Munagala Vijaya Kumar Damerla Rama Subba Reddy Gorla 《亚洲传热研究》2020,49(4):2390-2405
In the present study, free convective, laminar flow of Casson fluid is investigated numerically over a nonlinear stretched sheet to observe the characteristics of heat transfer in the presence of Newtonian heating. Nonlinear differential equations are derived from the present flow by utilizing the appropriate transformations. Thereafter, for the linear stretching case, an exact solution is applied for the momentum equation, and for the nonlinear stretching case, a convergent numerical technique, SRM, is applied. Computations of SRM and exact solutions are displayed through graphs. For various physical parameters, variation in velocity profile is observed by means of numerical computations and presented graphically. For checking the accuracy and convergence of the proposed method, outcomes are validated with the available outcomes in the literature and compared. The outcomes demonstrate that the velocity profile is reduced for the nonlinear stretching parameter effect, and, with increasing , the temperature is decreased and there is a reduction in the thickness of the thermal boundary layer. 相似文献
9.
This study involvesthe numerical modeling of steady thermal radiation and chemical reaction on non-Newtonian fluid motion via a bidirectional stretching surface. We have taken convective boundary conditions, and heat sources on the stretching surface. The working fluid of the present study is Casson fluid (“non-Newtonian”) with couple stress. The self-similarity forms of the nonlinear thermal radiative flow model are obtained by using similarity variables. Furthermore, the numerical results are computed with the help of fourth-order Runge–Kutta–Fehlberg method with a shooting algorithm after reducing nonlinear partial differential equations have been translated into strong ordinary differential equations (ODEs). Impacts of the various flow physical parameters especially Biot number, nonlinear thermal radiation, and heat source parameters containing nonlinear ODEs are discussed in detail for distinct numerical values. A comparison of calculated results with the known numerical results made with the previously published literature is mentioned and obtained a good agreement. Finally, we found that the (“coefficient of skin friction”) declines along directions, respectively, with via while the opposite direction follows with respect to and the (“heat transfer rate”), (“mass transfer rate”) increase with via while opposite direction follows with respect to . 相似文献
10.
A steady two‐dimensional Casson nanofluid flow over the permeable stretching/shrinking sheet along the viscous dissipation and the chemical reaction is studied in this article. The convective boundary condition is incorporated in energy equation. Similarity variables are applied to convert the governing partial differential equations into ordinary differential equations. The numerical solutions of the equations are obtained by using the shooting method with Maple implementation. The numerical findings indicate occurrence of the dual solutions for a certain range of stretching/shrinking and suction parameters. Therefore, a stability analysis is done to find the solution that is stable and physically realizable. The effects of the pertinent physical parameters on velocity, temperature, and concentration profiles are investigated graphically. Numerical results of various parameters involved for skin friction coefficient, the local Nusselt as well as Sherwood numbers are determined and also discussed in detail. The Casson and suction parameters decrease the velocity in the first solution, whereas they increase it in the second solution. The rate of heat transfer increases in both solutions with an increment in Eckert number, Biot number, thermophoresis, and Brownian motion parameters. Thermophoresis and Brownian motion parameters show opposite behavior in the nanoparticle's concentration. The nanoparticle concentration decreases in both solutions with increment in Schmidt number, Brownian motion, and chemical reaction parameters. 相似文献
11.
The current study deals with the effects of Newtonian cooling, magnetic field, and nonlinear radiation on the flow of a Jeffrey fluid along with thermal dispersion and homogeneous-heterogeneous reaction towards a stagnation point. The developed governing equations are transformed into nondimensional equations employing suitable similarity transformations along with their related boundary conditions. To solve and analyze these equations, the BVP4C solver of MATLAB has been used. The various properties of the fluid flow such as velocity, temperature, and concentration are represented in their respective graphs. The values obtained for skin friction and Nusselt number are expressed in the form of a table. The important outcomes of the present study are that the velocity declines as we increase the melting parameter, magnetic parameter, and Prandtl number. The temperature profile increases with radiation parameter, heat source, and magnetic number. An inclination is seen in the concentration of the fluid with a rise in Schmidt number whereas declination is seen with a rise in the homogeneous reaction parameter. Also, a comparison Table 1 has been made with the previous work under limited conditions. The table shows that the current work justifies the previous work system under those conditions. The present model can be utilized for many industrial purposes. Large-scale industries like plastic and food processing industries can utilize these results to enhance their productivity. 相似文献
12.
The present study aims to discuss the Williamson fluid flow and heat transfer across a permeable stretching cylinder with heat generation/absorption effects. The effects of viscous dissipation, Joule heating, and magnetic field are also taken into account. The BVP-4C numerical solver in MATLAB is adopted for all the numerical simulations in the present study. For this, the modeled partial differential equations are translated into dimensionless ordinary differential equations using some well-developed similarity transformations. A good agreement between the numerical results of the present study and existing literature is exhibited. The dimensionless physical parameters being investigated are Reynolds number, magnetic field parameter, suction parameter, heat source/sink parameter, Williamson fluid parameter, and mixed convection parameter. The numerical calculations are also performed for the skin friction coefficient and local Nusselt number to get an understanding of the shear stress rate and heat transfer rate, respectively. Furthermore, the impact of all these physical parameters on the velocity and temperature profiles is investigated and represented throughout the literature. 相似文献
13.
Numerous industrial and engineering systems, like, heat exchangers, chemical action reactors, geothermic systems, geological setups, and many others, involve convective heat transfer through a porous medium. The diffusion rate, drag force, and mechanical phenomenon are dealt with in the Darcy–Forchheimer model, and hence this model is vital to study the fluid flow and heat transport analysis. Therefore, numerical simulation of the Darcy–Forchheimer dynamics of a Casson material in a circular tube subjected to the energy losses due to the viscous heating and Joule dissipation mechanisms is performed. The novelty of the present investigation is to scrutinize the convective heat transport characteristics in a circular tube saturated with Darcy–Forchheimer porous matrix by utilizing the non-Newtonian Casson fluid. The flow occurs due to the elongation of the surface of a tube with a uniform heat-based source/sink. The similarity solution of the nonlinear problem was obtained using dimensionless similarity variables. The effects of operating parameters related to the flow phenomena are analyzed. Further, the friction factor and Nusselt number are also analyzed in detail. The present flow model ensures no flow reversal and acts as a coolant of the heated cylindrical surface; the existence of the magnetic field, as well as an inertial coefficient, acts as the momentum-breaking forces, whereas Casson fluidity builds it. The Joule heating phenomenon enhances the magnitude of temperature. The thermal field of the Casson fluid is higher at the surface of the circular pipe due to convective thermal conditions. 相似文献
14.
《International Journal of Hydrogen Energy》2022,47(12):8048-8059
Heat transportation is a novel prospective in many thermal processes and presents dynamic applications in industrial and thermal polymer processing optimization. The importance of heat transportation is noted in heat exchangers, production of crude oils, combustion, petroleum reservoirs turbine systems, thermal systems, porous media, modeling of resin transfer nuclear reactions etc. In view of such thermal applications the main objective here is to examine entropy in unsteady magnetohydrodynamic of Casson fluid flow. Radiation in addition to dissipation and ohmic heating are analyzed. Entropy is scrutinized employing thermodynamic second law. Characteristics of Soret and Dufour are also examined. Main objective here is to examine irreversibility. Dimensionless version of differential system is obtained through suitable variables. The obtained partial differential system is solved through numerical scheme (Finite difference method). Physical features of fluid flow, temperature, entropy optimization and concentration have been explained. Variations of parameters on drag force, Nusselt number and solutal transfer rate are graphically discussed. Higher fluid parameter leads to improve in velocity and entropy rate. Larger values of radiation parameter boost up thermal field. Entropy rate and velocity have reverse trend for magnetic field. An intensification for concentration is found through Soret number. Higher approximation of Reynold number enhances skin friction and velocity. Thermal transfer rate is augmented versus radiation and magnetic variables. 相似文献
15.
16.
The present analysis addresses linear and nonlinear radiation effects in hydrodynamic viscous Maxwell fluid flow on a unidirectional stretching surface through viscous dissipation. The relaxation effect is considered in the mathematical model, which elucidates mass transport mechanisms under binary chemical reaction and activation energy. Mathematical modeling contains nonlinear partial differential equations using boundary conditions. Appropriate transformations convert the partial differential equations into ordinary differential equations. Numerical solutions for regular differential equations are brought by Runge–Kutta–Fehlberg numerical quadrature and a shooting method with a tolerance level of 10−9. The influence of physical variables, such as Deborah relaxation number, rotation parameter, Biot number, activation energy parameter, reaction rate parameter, Eckert number, and Prandtl number are investigated. Increasing the Biot number improves the temperature region in the boundary layer. With high rotation, the increasing Deborah number enhances the fluid temperature substantially throughout the boundary layer. 相似文献
17.
In this research endeavor, Casson fluid flow and melting heat transfer due to a curved nonlinearly stretching sheet are investigated. The sheet is naturally permeable and the flow is considered in a porous medium. For flow in a porous medium, a modified Darcy's resistance term for Casson fluid is considered in the momentum equation. In the energy equation, heat transport characteristics, including viscous dissipation, are taken into account. Mass transport is also studied together with the impact of chemical reaction of higher order. The governing nonlinear partial differential equations of flow, heat, and mass transport are reduced to nondimensional ordinary differential equations using adequate similarity transformations and then solved numerically employing the bvp4c technique and Runge–Kutta fourth-order method on MATLAB. The impacts of numerous occurring parameters on relevant fields (velocity field, temperature field, and concentration field) are depicted and discussed by plotting graphs. We concluded the curvature parameter, reduces the pace of the flow. The impacts of the stretching index, and melting parameter, are also found to reduce flow and temperature field. Furthermore, we noted that the reaction parameter, and its order, exhibit opposite impacts on the concentration field. Moreover, the numerical values of skin-friction coefficient and Nusselt number calculated employing bvp4c and Runge–Kutta fourth-order technique are expressed in tabular mode, and these are found in an excellent match. For validation of the results, skin-friction coefficient values were computed using the Runge–Kutta fourth-order technique and bvp4c solver, compared with the existing results, and a good agreement was found. 相似文献
18.
Slip Flow of Casson Rheological Fluid Under Variable Thermal Conductivity with Radiation Effects
下载免费PDF全文

This paper investigates the radiation and chemical reaction effects on Casson non‐Newtonian fluid towards a porous stretching surface in the presence of thermal and hydrodynamic slip conditions. The governing boundary layer conservation equations are normalized into nonsimilar form using similarity transformations. A numerical approach is applied to the resultant equations. The behavior of the velocity, temperature, concentration, as well as the skin friction coefficient, Nusselt number, and Sherwood number for various governing physical are discussed. Increasing the radiation parameter decreases the temperature. An increase in the rheological parameter (Casson parameter) induces an elevation in the skin friction coefficient, the heat and mass transfer rates. The larger the β values the closer the fluid is in behavior to a Newtonian fluid and further departs from plastic flow. Temperature of the fluid was found to decrease with increasing values of the Casson rheological parameter. The most important non‐Newtonian fluid possessing a yield value is the rheological Casson fluid, which finds significant applications in polymer processing industries, biomechanics, and chocolate food processing. 相似文献
19.
Hybrid nanofluids (HNFs) are vital in engineering and industrial applications due to significant effective thermal conductivity as compared with regular fluid and nanofluid (NF). The HNF is a process of the conglomeration of two or more nanoparticles of different thermophysical properties to affect the thermal transport characteristics of base fluid, particularly in gearing up heat switch charge. Further, the impact of HNF combined with stretching and squeezing of bounding surface has direct application in thinning/thickening of polymeric sheets in the chemical industry. The current study analyzes the flow of HNF over a stretching sheet under the influence of chemical reaction as well as suction/injection. We have considered water as the base fluid and copper , and aluminum oxide as nanoparticles. The consequences of the magnetic field, viscous dissipation, and Joule heating are also to be investigated. The resulting partial differential equations are transformed into nonlinear ordinary differential equations using suitable similarity transformations. The numerical solutions to governing equations are obtained with the help of MATLAB software using the bvp4c solver. The important finding is: the rate of heat transfer of HNF is higher than that of NF as well as base fluid. Moreover, contributions of higher Eckert number and radiation parameter are to increase the temperature in the flow domain, whereas the Prandtl number reduces it. It is further noticed that heavier species as well as viscous dissipation decline the level of concentration across the flow field. 相似文献
20.
Microorganisms play a vital role in understanding the ecological system. The motions of micororganisms are self‐propelled while the impact of thermophoresis and Brownian motion property of nanoparticle shows more challenges in biotechnological and medical applications. The present problem is based on the understanding of double‐dispensed bioconvection for a Casson nanofluid flow over a stretching sheet. Suction phenomenon is introduced at the surface of the stretching sheet along with the convective boundary condition. The convection and movement of the microorganisms are assisted by an applied magnetic field, nonlinear thermal radiation, and first‐order chemical reaction. The governing equations are highly coupled and thus we used the spectral quasilinearization method to solve the governing equations. The study of the residual errors on the systemic parameters had given a confidence with the present results. The final outcomes are displayed through graphs and tables. The thermal dispersion coefficient shows a positive response in the temperature while a similar response is observed for the concentration with solutal dispersion coefficient. The response is reversible for the heat transfer rate at the surface with thermal dispersion coefficient. The density of the motile microorganism at the surface decreases with increase in the Casson number, thermal dispersion coefficient, and solute dispersion coefficient, while an opposite phenomenon was observed with increase in the density ratio of the motile microorganism. 相似文献