首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Canola oil (CAO) with (0.05–0.4%) and without added bene kernel oil (BKO) and tert-butylhydroquinone (TBHQ, 100 ppm) was used for deep-fat frying of potatoes at 180 °C for 48 h. Frying stability of the oil samples during the frying process was measured based on the variations of total polar compounds (TPC) content, conjugated diene value (CDV), acid value (AV), carbonyl value (CV) and total tocopherols (TT). In general, frying stability of the CAO significantly (P < 0.05) improved in the presence of the TBHQ and BKO. The best frying performance for the CAO was obtained by using of 100 ppm TBHQ and 0.1% BKO. The effectiveness of TBHQ and BKO at these levels was found to be nearly the same. Increasing the level of BKO from 0.1 to 0.4% caused a decrease in the oxidative stability of the CAO, indicating the pro-oxidant effect of the oils added at these levels.  相似文献   

2.
Increasing consumer awareness for all natural products has quickly led to growing research on new resources of potent and profitable natural antioxidants. In this context, for the first time, the Kolkhoung hull oil (KHO) (Pistacia khinjuk)‐unsaponifiable matters (USM) (UHO) (100, 200, and 400 mg kg?1) were incorporated into refined soybean oil (RSO) and the oxidative stability of prepared oils was measured during 32 hours of frying. Then, the obtained results (oxidative stability) were compared to the samples containing tert‐butyl hydroquinone (TBHQ) (100 mg kg?1) as a common synthetic antioxidant. According to the results of oxidative stability assays of acid values, conjugated diene values and carbonyl values, and total polar compounds, the incorporation of UHO, particularly at a concentration of 200 mg kg?1, was more efficient in improving the oxidative stability compared to TBHQ. The tocol content of KHO (2043.4 mg kg?1) was higher than the reported amounts of other conventional edible oils. Furthermore, by incorporation of UHO into RSO, as compared with TBHQ, a better protection of naturally occurring antioxidants (tocopherols and sterols) was found after adding UHO to RSO. This fact was mainly attributed to the UHO's tocotrienol fraction. Hence, the USM of KHO can be used as a potent antioxidant to improve the oxidative stability of frying oils.  相似文献   

3.
To determine antioxidative effects of ferulic acid and esterified ferulic acids, these compounds were added to soybean oils (SBO), which were evaluated for oxidative stability and frying stability. Additives included feruloylated MAG and DAG (FMG/FDG), ferulic acid, ethyl ferulate, and TBHQ. After frying tests with potato chips, oils were analyzed for retention of additives and polar compounds. Chips were evaluated for hexanal and rancid odor. After 15 h frying, 71% of FMG/FDG was retained, whereas 55% of ethyl ferulate was retained. TBHQ and ferulic acid levels were 6% and <1%, respectively. Frying oils with ethyl ferulate or TBHQ produced significantly less polar compounds than SBO with no additives. Chips fried in SBO with TBHQ or ferulic acid had significantly lower amounts of hexanal and significantly less rancid odor after 8 d at 60°C than other samples. Oils were also aged at 60°C, and stability was analyzed by PV, hexanal, and rancid odor. Oils with TBHQ or FMG/FDG had significantly less peroxides and hexanal, and a lower rancid odor intensity than the control. FMG/FDG inhibited deterioration at 60°C, whereas ethyl ferulate inhibited the formation of polar compounds in frying oil. Ferulic acid acted as an antioxidant in aged fried food. TBHQ inhibited oil degradation at both temperatures. Presented at the 94th AOCS Meeting & Expo, Kansas City, MO, May 4–7, 2003.  相似文献   

4.
Rambutan (Nephelium lappaceum L.) peel (RBP) is discarded as the main by‐product during processing of the fruit. Increasing attention is now paid to the valorization of RBP for the recovery of valuable compounds. Geraniin, ellagic acid, quercetin, and rutin are the main phenolic compounds found in methanolic RBP extract. Extracted rambutan peel powder (ERPP) is used to evaluate the oxidative stability of soybean oil stored at 4 and 30 °C in the dark and light and deep fried with potatoes at 160 °C. Tert‐butylhydroquinone (100 µg g?1 oil, TBHQ) serves as positive control. Oil supplemented with ERPP of 1000 µg gallic acid equivalents (GAE) g?1 of oil shows positive effects on the retardation of the oxidation process during storage in comparison with oil without addition. During deep frying, either ERPP (1000 µg GAE g?1) or TBHQ retards the lipid oxidation of oil. Levels of thiobarbituric acid reactive substances of potatoes fried in oil fortified with the extract and TBHQ (0.4–0.59 µg g?1) are much lower than those without the extract (1.31 ± 0.10 µg g?1) (p < 0.05). Therefore, RBP extract exhibits favorable antioxidant effects and can be used for effectively inhibiting lipid oxidation in oil during storage and deep frying. Practical Applications: An extract from rambutan fruit peel containing phenolic compounds, that is, geraniin, ellagic acid, rutin, and quercetin showed promising results to be used as potential antioxidants in soybean oil during deep frying. Both oxidation of the frying oil as well as the oxidation of the food product, that is, potatoes were inhibited. These results demonstrated that rambutan fruit peel extract can be used as a natural antioxidant in frying oil to replace synthetic antioxidants, that is, TBHQ.  相似文献   

5.
The oxidative stability of diacylglycerol (DAG)-enriched soybean oil and palm olein produced by partial hydrolysis using phospholipase A1 (Lecitase Ultra) and molecular distillation was investigated at 110 °C by the Rancimat method with and without addition of synthetic antioxidants. Compared with triacylglycerol oils, the DAG-enriched oils displayed lower oxidative stability due to a higher content of unsaturated fatty acids and a lower level of tocopherols. With the addition (50–200 mg/kg) of tert-butylhydroquinone (TBHQ) or ascorbyl palmitate (AP), the oxidative stability indicated by induction period (IP) of these DAG-enriched oils under the Rancimat conditions was improved. The IP of the diacylglycerol-enriched soybean oil increased from 4.21 ± 0.09 to 12.64 ± 0.42 h when 200 mg/kg of TBHQ was added, whereas the IP of the diacylglycerol-enriched palm olein increased from 5.35 ± 0.21 to 16.24 ± 0.55 h when the same level of AP was added. Addition of TBHQ, alone and in combination with AP resulted in a significant (p ≤ 0.05) increase in oxidative stability of diacylglycerol-enriched soybean oil. AP had a positive synergistic effect when used with TBHQ.  相似文献   

6.
Effect of vacuum frying on the oxidative stability of oils   总被引:2,自引:0,他引:2  
The purpose of this study was to evaluate frying oil quality with different assessment methods during vacuum frying of carrot slices. In six consecutive days, palm oil, lard, and soybean oil were fried under vacuum at 105°C for 20 min each hour in an 8-h shift. Peroxide value, acid value, carbonyl value, total polar components, dielectric constant (Food Oil Sensor reading), viscosity, and fatty acid composition were used to evaluate the quality of these oils. Results showed that palm oil and lard possess greater thermal stability than soybean oil. The decrease in C18:2/C16:0 ratio was greater for soybean oil than the other two oils. Of the assessment methods used, peroxide value, carbonyl value, total polar components, and dielectric constant all showed good correlation with frying time and between each other. Viscosity was suitable to assess vacuum-fried lard and soybean oil, but not palm oil. The measurement of dielectric constant, on the other hand, appeared to be unsuitable to assess vacuum-fried soybean oil.  相似文献   

7.
Pilot plant-processed samples of soybean and canola (lowerucic acid rapeseed) oil with fatty acid compositions modified by mutation breeding and/or hydrogenation were evaluated for frying stability. Linolenic acid contents were 6.2% for standard soybean oil, 3.7% for low-linolenic soybean oil and 0.4% for the hydrogenated low-linolenic soybean oil. The linolenic acid contents were 10.1% for standard canola oil, 1.7% for canola modified by breeding and 0.8% and 0.6% for oils modified by breeding and hydrogenation. All modified oils had significantly (P<0.05) less room odor intensity after initial heating tests at 190°C than the standard oils, as judged by a sensory panel. Panelists also judged standard oils to have significantly higher intensities for fishy, burnt, rubbery, smoky and acrid odors than the modified oils. Free fatty acids, polar compounds and foam heights during frying were significantly (P<0.05) less in the low-linolenic soy and canola oils than the corresponding unmodified oils after 5 h of frying. The flavor quality of french-fried potatoes was significantly (P<0.05) better for potatoes fried in modified oils than those fried in standard oils. The potatoes fried in standard canola oil were described by the sensory panel as fishy.  相似文献   

8.
Antioxidant activity of sesamol was investigated in soybean oil using a miniaturized frying experiment with potato cubes fried at 180 °C. Oxidation of soybean oil was determined by gel permeation chromatography for polymerized triacylglycerols and by 1H-NMR spectroscopy for reactions at reactive sites of soybean oil molecules including olefinic, bisallylic and allylic protons during frying. Sesamol showed lower antioxidant activity than 0.02 % (w/w) tert-butylhydroquinone (TBHQ) at the same molar concentration. Higher concentrations of sesamol provided better antioxidant effects indicating that no prooxidant activity occurred. Sesamol in this frying test showed better results than 0.02 % TBHQ when the concentration was as high as 0.66 % by weight. An HPLC experiment showed that the concentration of sesamol decreased sharply during frying. Thermogravimetric analysis indicated that sesamol is highly volatile and easily oxidizes when exposed to air. To overcome this problem, two multiple addition methods were evaluated in which sesamol was added portion by portion every hour. The multiple additions of divided portions of 0.66 % (w/w) sesamol maintained the concentration of sesamol at the minimum of 0.04–0.06 % throughout the frying process and showed improved antioxidant activity compared to one single addition of 0.66 % sesamol at the beginning of frying. One of the multiple addition methods showed 28, 18, 59, and 27 % less polymerized triacylglycerols and losses of olefinic, bisallylic and allylic protons, respectively, than 0.02 % TBHQ after 8-h frying. This study shows that sesamol can be used as an alternative for synthetic antioxidants for frying oil.  相似文献   

9.
We aimed at investigating oxidative stability and changes in fatty acid and tocopherol composition of extra virgin olive oil (EVOO) in comparison with refined seed oils during short‐term deep‐frying of French fries, and changes in the composition of the French fries deep‐fried in EVOO. EVOO samples from Spain, Brazil, and Portugal, and refined seed oils of soybean and sunflower were studied. Oil samples were used for deep‐frying of French fries at 180 °C, for up to 75 min of successive frying. Tocopherol and fatty acid composition were determined in fresh and spent vegetable oils. Tocopherol, fatty acid, and volatile composition (by SPME–GC–MS) were also determined in French fries deep‐fried in EVOO. Oil oxidation was monitored by peroxide, acid, and p‐anisidine values, and by Rancimat after deep‐frying. Differential scanning calorimetry (DSC) analysis was used as a proxy of the quality of the spent oils. EVOOs presented the lowest degree of oleic and linoleic acids losses, low formation of free fatty acids and carbonyl compounds, and were highly stable after deep‐frying. In addition, oleic acid, tocopherols, and flavor compounds were transferred from EVOO into the French fries. In conclusion, EVOOs were more stable than refined seed oils during short‐term deep‐frying of French fries and also contributed to enhance the nutritional value, and possibly improve the flavor, of the fries prepared in EVOO.  相似文献   

10.
Oxidative Stability Index (OSI) of carbohydrate fatty acid polyesters, fat substitutes and vegetable oils were measured with the Omnion Oxidative Stability Instrument according to the new AOCS Standard Method Cd 12 B-92 (The Official Methods and Recommended Practices of the American Oil Chemists' Society, edited by D. Firestone, AOCS, Champaign, 1991). The stability of crude and refined, bleached and deodorized (RBD) vegetable oils (soybean, hydrogenated soybean and peanut) were determined at 110°C. In addition, OSI times for sucrose polyesters of soybean oil, butterfat, oleate:stearate and methyl glucoside polyester of soybean oil were determined in the absence and in the presence of 0.02 wt% antioxidants, [Tenox TBHQ (tertiary butylhydroquinone, Tenox GT-2 (from Eastman Chemical Products (Kingsport, TN); and vitamin E (from BASF, Wyandotte, MI)], and the results were compared with those of vegetable oils. Crude oils were most stable (20.4–25.9 h), followed by RBD oils (9.3–10.4 h) for soybean and peanut oils, respectively, and fat substitutes (3.8–6.8 h). Overall, Tenox TBHQ was the best antioxidant for improving the oxidative stability of both vegetable oils and fat substitutes. The sucrose polyester made with oleic and stearic acid was more stable than fat substitutes containing more polyunsaturated fatty acids, such as those from soybean oil, or from short-chain fatty acids, such as from butterfat. Antioxidants enhanced the stability of RBD oils (222% increase) and synthetic fat substitutes (421–424% increase) more than that of crude oils (33% increase). The shapes of the induction curves, not the actual OSI times for fat substitutes and vegetable oils, were similar and sharply defined.  相似文献   

11.
The anti‐rancidity effect of the hull oil unsaponifiable matter (USM, 100 ppm) of Pistacia atlantica subsp. mutica (Bene) on sunflower oil (SFO) during frying at 180 °C was investigated and compared to that of tert‐butylhydroquinone (TBHQ, 100 ppm). The unsaponifiable constituents of the Bene hull oil (BHO) were separated into hydrocarbons (3.7%), carotenes (3.6%), tocopherols and tocotrienols (24.7%), linear and triterpenic alcohols (0.9%), methylsterols (5.7%), sterols (3.2%), triterpenic dialcohols (4.7%), and triterpenic dialcohol methylesters (4.5%), by means of silica gel TLC. The results obtained from the measurements of total polar compounds, conjugated diene value, carbonyl value, and acid value during 32 h of frying showed that the frying stability of SFO improves more in the presence of the USM of BHO than in the presence of TBHQ. Moreover, compared to TBHQ, the USM had a better protective effect on the indigenous tocopherols of SFO during frying.  相似文献   

12.
Changes in chemical, physical and sensory parameters of high‐oleic rapeseed oil (HORO) (NATREON?) during 72 h of deep‐fat frying of potatoes were compared with those of commonly used frying oils, palm olein (PO), high‐oleic sunflower oil (HOSO) and partially hydrogenated rapeseed oil (PHRO). In addition to the sensory evaluation of the oils and the potatoes, the content of polar compounds, oligomer triacylglycerols and free fatty acids, the oxidative stability by Rancimat, the smoke point and the anisidine value were determined. French fries obtained with HORO, PO and HOSO were still suitable for human consumption after 66 h of deep‐fat frying, while French fries fried in PHRO were inedible after 30 h. During the frying period, none of the oils exceeded the limit for the amount of polar compounds, oligomer triacylglycerols and free fatty acids recommended by the German Society of Fat Science (DGF) as criteria for rejection of used frying oils. After 72 h, the smoke point of all oils was below 150 °C, and the amount of tocopherols was reduced to 5 mg/100 g for PHRO and 15 mg/100 g for HORO and HOSO. Remarkable was the decrease of the oxidative stability of HOSO measured by Rancimat. During frying, the oxidative stability of this oil was reduced from 32 h for the fresh oil to below 1 h after 72 h of frying. Only HORO showed still an oxidative stability of more than 2 h. From the results, it can be concluded that the use of HORO for deep‐fat frying is comparable to other commonly used oils.  相似文献   

13.
The stability parameters of 22 samples of soybean oil produced in Mexico were determined. Samples were analyzed for moisture, color, free fatty acids, peroxide value, p-anisidine value, fatty acid profile, metals, flavor, and Rancimat test for oxidative stability. Results obtained were compared with the stability parameters of soybean oil sproduced in the United States and Costa Rica. The fatty acid profile in all samples analyzed corresponded to the expected profile for a 100% soybean oil. Sixty-four percent of the oils had oxidative stabilities similar to those reported for soybean oils from the United States and Costa Rica. This suggests that in spite of the good quality, the soybean oil production process in Mexico needs further improvement. Especially important is maintaining appropriate control during the degumming and bleaching steps. Special consideration should be given to preserving the natural antioxidants present in the oil.  相似文献   

14.
Sunflower oil was used for deep frying of potatoes at 170 ± 5 °C and for 8 h per day for 5 days in a fryer with an automatic oil filtration system. Three different frying operations were performed: operation (OP)-1, OP-2 and OP-3; that correspond to the oil unfiltered at the end of each frying day, the oil filtered through the fryer's own filter (passive filtration) and the oil firstly subjected to passive filtration and then filtered through a polyethersulfone membrane modified with hexamethyldisiloxane via radio frequency plasma (75 W-5 min, discharge power–time), respectively. The performance of each operation was investigated in terms of free fatty acids (FFA), conjugated dienoic acids (CD), TOTOX value, total polar content (TPC), Hunter color, viscosity, fatty acid composition, and tocopherol content. The results showed that OP-3 could decrease FFA, CD, TOTOX, TPC, L*a*b* value, viscosity and linoleic acid (18:2)/palmitic acid (16:0) ratio in 29.6, 11.7, 25, 30.8, 6.1*11.3*20.8*, 7.8, 12.2 %, respectively, compared to the unfiltered oil (OP-1). Regenerated oil from OP-3 had a frying life approximately 17 h more than oils from both OP-1 and OP-2.  相似文献   

15.
In this work, the composition of fatty acids and the oxidative stability of the oil from Raphanus sativus L. var. oleiferus Metzg. are presented and analyzed with the Rancimat method, and by absorption and molecular fluorescence spectroscopy. The gas chromatography showed that the content of unsaturated fatty acids was 90.27 ± 6.10 %, with a predominance of oleic (C 18:1), linoleic (C 18:2), erucic (C 22:1), linolenic (C 18:3) and eicosenoic (C 20:1) acids. The induction period determined by the Rancimat method was 48.0 ± 1.0 h. In addition, the thermal degradation of the oil was monitored through its acid value, density, UV–Vis absorption and molecular fluorescence, and here we show the potential applicability of emission spectroscopy for R. sativus oil oxidation studies.  相似文献   

16.
The main objective of this study was to determine the effect of different frying oils and frying methods on the formation of trans fatty acids and the oxidative stability of oils. Sunflower, canola and commercial frying oils, the most commonly used oils for frying potatoes in the fast food industry, were used as the frying medium. The value for total polar compounds was highest when commercial frying oil was used in the microwave oven (22.5 ± 1.1). The peroxide value, as an indicator of oil oxidation, was lowest for microwave oven frying (2.53 ± 0.03). The K232 and K270 values were 0.41 ± 0.04 and 0.18 ± 0.02, respectively, for commercial frying oil in the microwave oven. The lowest free fatty acid content was recorded for the commercial frying oil used in the deep‐fat fryer at 190 °C. The highest iodine value was measured for sunflower oil used in the deep‐fat fryer (148.14 ± 0.07), indicating a greater degree of unsaturation. The lowest trans fatty acid value was recorded for sunflower oil in the microwave oven (0.17 ± 0.05), with a higher overall amount of total trans fatty acids observed for oils after frying in the electrical deep‐fat fryer compared to the microwave. Sunflower oil was favourable for both frying methods in terms of the trans fatty acid content.  相似文献   

17.
Changes in the composition of soybean oil during deep‐fat frying with wheat dough (WD) and chicken breast meat (CBM) were comparatively investigated using gas chromatography–mass spectrometry and Fourier transform infrared spectroscopy (FTIR). The amounts of saturated fatty acids (FAs) and short‐chain FAs were increased. The amount of unsaturated FAs was decreased as the processing time increased. An increase in the amount of tetradecanoic acid and 9‐cis‐hexadecanoic acid was observed during the CBM frying only. The FTIR spectrum of frying oil was analyzed by extracting the entire information as the area ratios based on vibration absorptions of the specific functional groups. Changes in content of functional groups, namely cis C=C, trans C=C, C=O, C–O, O–H, and C–H, were studied by the FTIR‐based method. Based on the changes in the content of FAs and functional groups, soybean oil fried with CBM degraded more quickly than that fried with WD. Moreover, good linear correlations between the change in contents of functional groups and the mass percentages of FAs were also observed. The FTIR‐based method could be used in real time to monitor the quality of frying oil during the deep‐fat frying.  相似文献   

18.
Fifteen milliliters of soybean oil having peroxide value (PV) of 0, 2, 4, 6, 8, or 10 meq/kg oil in a 35 mL serum bottle was sealed air-tight with a Teflon rubber septum and aluminum cap and was stored in a forced-air oven at 50 °C. The oxidative stability of soybean oil was evaluated daily for six days by measuring the headspace oxygen content and volatile compounds in the headspace of a sample bottle by gas chromatography. As the initial PV of the oil increased from 0 to 2, 4, 6, 8 and 10, the headspace oxygen decreased and the volatile compounds increased at p < 0.05. Hydroperoxide accelerated the oxidation of soybean oil. The correlation coefficient (R 2) between the headspace oxygen and the volatile compounds was 0.95. The increase of tertiary butyl hydroquinone (TBHQ) from 0 to 50 ppm for the oil of PV 4 or 8 had a significant effect on the oxidative stability at p < 0.05. The increase from 50 to 100 ppm for the oil of PV 4 or 8 did not significantly increase the stability at p > 0.05. The oxidative stability of PV 8 meq/kg and 50 ppm TBHQ was better than the control with PV 0 and 0 ppm TBHQ at p < 0.05. TBHQ was an effective antioxidant to improve the oxidative stability of soybean oil.  相似文献   

19.
Degradation and Nutritional Quality Changes of Oil During Frying   总被引:6,自引:0,他引:6  
The changes in regular canola oil as affected by frying temperature were studied. French fries were fried intermittently in canola oil that was heated for 7 h daily over seven consecutive days. Thermo-oxidative alterations of the oil heated at 185 ± 5 or 215 ± 5 °C were measured by total polar components (TPC), anisidine value (AV), color components formation, and changes in fatty acid composition and tocopherols. Results showed that TPC, AV, color and trans fatty acid content increased significantly (P < 0.05) as a function of frying temperature and time. The oil polyunsaturated fatty acids (PUFA) decreased in direct proportion to frying temperature and time. After 7 days of frying, the amount of PUFA was reduced by half and the trans isomers contribution increased 2.5 times during frying at 215 °C. Of the parameters assessed, total polar component and color had the highest correlation, with correlation coefficients of 0.9650 and 0.9302 for frying at 215 and 185 °C, respectively. TPC formation correlated inversely with the reduction of tocopherols.  相似文献   

20.
Refined, bleached, and deodorized soybean oil and vanaspati (partially hydrogenated vegetable oil blend consisting of peanut, cottonseed, nigerseed, palm, rapeseed, mustard, rice bran, soybean, sunflower, corn, safflower, sesame oil, etc., in varying proportions) were used for deep-fat frying potato chips at 170, 180, and 190°C. Refractive index, specific gravity, color, viscosity, saponification value, and free fatty acids of soybean oil increased with frying temperature, whereas the iodine value decreased. The same trend was observed in vanaspati, but less markedly than in soybean oil, indicating a lesser degree of deterioration. Iodine values of soybean oil and vanaspati decreased from their initial values of 129.8 and 74.7 to 96.2 and 59.6, respectively, after 70 h of frying. Polyunsaturated fatty acids decreased in direct proportion to frying time and temperature. Losses were highest in soybean oil with a 79% decrease in trienoic acids and a 60% decrease in dienoic acids. Levels of nonurea adduct-forming esters were proportional to the losses of unsaturated fatty acids. Butylated hydroxyanisole and tertiary butylhydroquinone did not affect deterioration of soybean oil at frying temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号