首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The significance of hybrid nanofluids in controlling heat transmission cannot be overemphasized. Therefore, this article scrutinizes the electromagnetized flow of Carreau hybrid nanofluid towards a stretching surface in a Darcy–Forchheimer porous medium with the occurrence of slip conditions. To form the hybrid nanofluid, the amalgamation of silver and alumina nanoparticles (NPs) embedded in water as conventional fluid is assumed. For accurate interception of the rate of heat and mass transport, thermal conductivity and mass diffusion conductance are presumed to be temperature variants. The modeling system of partial differential equations has been translated into a nondimensional form by means of suitable similarity conversions. Then, the subsequent system of ordinary differential equations is handled using overlapping domain decomposition spectral local linearization method to acquire numerical solutions. The choice of the method has been justified through the provision of errors, condition numbers, and computation time. The behavior of distinct fluid parameters on the flow features, quantities of engineering curiosity, and entropy is analyzed. Findings of paramount importance constitute that the superior thermal conductivity, heat transfer efficiency, and low production cost can be achieved through the hybridization of silver and alumina NPs. The role of thermal radiation and temperature-variant thermal conductivity is to enhance the thermal transport performance of Carreau hybrid nanofluids. The velocity, energy, and mass profiles grow with the utilization of injection effects. The principal aspiration of the second law of thermodynamics (minimizing the rate of entropy generation) can be achieved by considering shear-thinning Carreau fluid while reducing the porosity parameter and Brinkman number in the existence of velocity slip conditions in the flow system. Outcomes of the current flow model can play a significant role in biomedical, technological, and various manufacturing processes. The approximation of entropy contributes towards power engineering and aeronautical propulsion to anticipate the smartness of the overall system.  相似文献   

2.
The main objective of the present examination is to design a stable mathematical model of a two-phase dusty hybrid nanofluid flow over a stretching sheet with heat transfer in a porous medium, and the Darcy–Forchheimer flow is taken into account with viscous dissipation and melting effect. The equations of motion are reduced to nonlinear ordinary differential equations by considering suitable similarity variables. These dimensionless expressions are solved by a well-known numerical technique known as Runge–Kutta–Fehlberg fourth–fifth order method. The behavioral study and analysis of the velocity and thermal profile in dual phases (fluid phase and dust phase) for diverse values of parameters are estimated using graphs and tables. The result outcome reveals that the velocity gradient declines in the fluid phase and increases in the dust phase for a rise in values of the velocity interaction parameter. Also, the velocity gradients of the both phases diminish for increasing values of the porosity parameter. Furthermore, it is determined that the increase in the value of melting parameter leads to a decline in the thermal gradient of both phases.  相似文献   

3.
In several biotechnological processes, multiple slips are the most paramount, such as blood pumping from the heart to different body components, endoscopy treatment, pabulum distribution, and the heat transport phenomenon regulation. In the current research, we have studied the multiple slips, Darcy–Forchheimer, and Cattaneo–Christov heat flux model on a stretching surface exposed to magnetic carbon nanotube nanofluid. We have additionally included a heat source or sink, a chemical reaction for manipulating the heat and mass transport phenomena. The resulting governing partial differential equations have been transformed into ordinary differential equations. With the Runge–Kutta–Fehlberg fourth–fifth-order procedure, the transformed governing equations are numerically solved. Numerical solutions for different parameters for velocity, temperature, and concentration profiles (Eckert number, velocity slip, thermal slip, mass slip, etc.) are highlighted. Graphical and numerical results for the various parameters in the modeled problem have been outlined. The present numerical results are compared with the published ones for some limiting cases. The slip has been found to control the flow of the boundary layer.  相似文献   

4.
In this paper, the effect of rotation on the onset of thermal convection in a horizontal layer of nanofluid saturated by a Darcy–Brinkman porous medium is considered. A linear stability analysis based upon normal mode is used to find solution of the fluid layer confined between two free boundaries. The onset criterion for stationary and oscillatory convection is derived analytically and graphically. The effects of the concentration Rayleigh number, Taylor number, Lewis number, Darcy number and modified diffusivity ratio on the stability of the system are investigated. The sufficient conditions for the non-existence of overstability are also derived.  相似文献   

5.
This theoretical analysis explores the effect of heat and mass transfer on particle–fluid suspension for the Rabinowitsch fluid model with the stiffness and dynamic damping effects through Darcy–Brinkman–Forchheimer porous medium. In this study, we also incorporate slip and transverse magnetic field effects. Using low Reynolds number, to neglect inertial forces and to keep the pressure constant during the flow, channel height is used largely as compared with the ratio of length of the wave. A numerical technique is used to solve flow governing system of differential equations. Particular attention is paid to viscous damping force parameter, stiffness parameter, and rigidity parameter; also, the numerical data for thermal profile, momentum, and concentration distribution are presented graphically. Outcomes are deliberated in detail for different fluid models (thinning, thickening, and viscous models). It is found that velocity profile increases for greater values of viscous damping effect and stiffness and rigidity parameter for shear thinning, but conflicting comportment is showed for thickening nature model. Viscous dissipation effects increases the thermal profile for all cases of fluid models. The scope of the present article is valuable in explaining the blood transport dynamics in small vessels while considering the important wall features with chemical reaction characteristics. The current analysis has extensive applications in biomedical engineering field, that is, peristaltic pumps.  相似文献   

6.
The present study addresses the transient as well as non-Darcian effects on laminar natural convection flow in a vertical channel partially filled with porous medium. Forchheimer–Brinkman extended Darcy model is assumed to simulate momentum transfer within the porous medium. Two regions are coupled by equating the velocity and shear stress in the case of momentum equation while matching of the temperature and heat flux is taken for thermal energy equation. Approximate solutions are obtained using perturbation technique. Variations in velocity field with Darcy number, Grashof number, kinematic viscosity ratio, distance of interface and variations in temperature distribution with thermal conductivity ratio, distance of interface are obtained and depicted graphically. The skin-friction and rate of heat transfer at the channel walls are also derived and the numerical values for various physical parameters are tabulated.  相似文献   

7.
This study's primary objective is to analyze the entropy generation in an unsteady magnetohydrodynamics (MHD) Eyring–Powell nanofluid flow. A surface that stretched out exponentially induced flow. The influences of thermal radiation, thermophoresis, and Brownian motion are also taken into consideration. The mathematical formulation for the transport of mass, momentum, and heat described by a set of partial differential equation is used, which is then interpreted by embracing the homotopy analysis method and with a fourth-order precision program (bvp4c). Graphical results display the consequences of numerous parameters on velocity, temperature, concentration, and entropy generation. Moreover, escalating amounts of the magnetic parameter, thermal radiation parameter, Reynolds number, and Brinkman number improve the entropy profile of the nanofluid. The rate of heat flux and the mass flux conspicuously improves for non-Newtonian fluid as compared to Newtonian fluid.  相似文献   

8.
This paper is focused on the analysis of heat and mass transfer radiative–convective fluid flow using quadratic multiple regression and numerical approach. The physical phenomenon is analyzed by utilizing partial differential equations (PDEs). Thermophysical properties, such as viscosity, thermal conductivity, and mass diffusivity, are varied and temperature-dependent. This study is unique because of its applications in magnetohydrodynamic power accelerators, drilling operators, and bioengineering. The governing PDEs are transformed into coupled nonlinear ordinary differential equations (ODEs). The transformed ODEs are solved numerically using the spectral homotopy analysis method. Also, a quadratic multiple regression analysis is performed on quantities of engineering interest to show the significance of the flow parameters. It is observed that the heat and mass transfer process is affected by nonlinear buoyancy impact. The Lorentz force produced by the imposed magnetic field decline the thickness of the hydrodynamic boundary layer. Findings revealed that the nonlinear convective parameter and variable thermophysical properties are greatly affected by the rate of heat and mass transfer. Previously published work was used to validate the present one, which conformed with it. The slope of linear regression through data points is adopted to show the rate of change in skin friction, Nusselt, and Sherwood numbers during the flow phenomenon.  相似文献   

9.
The present work explores the consequence of the flow of micropolar fluid in an inclined microchannel when exposed to linear radiation in presence of a magnetic field. The microchannel is embedded with a porous medium and the Darcy–Forchheimer model is implemented. The walls of the microchannel facilitate the simultaneous suction and injection of the micropolar fluid. A multiple slip regime and temperature jump conditions were assumed at the boundaries. The equations are modeled and nondimensionalized using nondimensional entities and further solved with the aid of the Runge–Kutta–Fehlberg method. Entropy generated in the medium and ratio of irreversibilities is also computed. Results so obtained deliberate that enhancement in Darcy number has caused an increment in entropy generation rate whereas the opposite nature is attained for the Bejan number. Magnifying the radiation parameter has resulted in diminishing the profile of entropy generation rate and Bejan number.  相似文献   

10.
The paper presents an analytical treatment of double-diffusive nanofluid convection in a porous medium. The problem treated is natural convection past a vertical plate when the base fluid of the nanofluid is itself a binary fluid such as salty water. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, while the Darcy model is used for the porous medium. In addition the thermal energy equations include regular diffusion and cross-diffusion terms. A similarity solution is presented.  相似文献   

11.
We often encounter many processes where the cooling rate is a key factor in deciding the features of a desired product. Due to increasing demands of controlled cooling systems, an effort is made to theoretically study the effect of volume fraction on mixed convective Cu–water nanofluid flow over a stretching surface with activation energy and thermal radiation. The nonlinear dynamical system is simplified using apt similarity variables and the obtained ordinary differential equations are dealt numerically using Runge–Kutta–Fehlberg method and shooting scheme. The thermal and solutal equations are modeled considering Cattaneo–Christov double-diffusion model. The flow problem is studied considering velocity slip and zero mass flux state at the surface. As a novelty, the present case considers the blowing effect at the surface to study massive species transport during nanofluid flow with Cattaneo–Christov double-diffusion model. The results show that an increase in strength of thermal radiation increases temperature and buoyancy ratio parameter, thereby escalating the skin friction coefficient. When thermal relaxation parameter changes from 0.001 to 0.005, heat transfer coefficient improves by 24.36%. Furthermore, with the change in value of the blowing parameter from 0.1 to 0.1015, the maximum value concentration of nanoparticles that is attained during the flow is increased by 7.15%.  相似文献   

12.
In this paper we have analyzed the combined effects of magnetic field and convective diffusion of species through a non-Darcy porous medium over a vertical stretching sheet with temperature dependent viscosity and non-uniform heat source/sink. The boundary layer equations are transformed into ordinary differential equations using self-similarity transformation which are then solved numerically using fifth-order Runge–Kutta Fehlberg method with shooting technique for various values of the governing parameters. The effects of electric field parameter, non-uniform heat source/sink parameters and Schmidt number on concentration profiles are analyzed and discussed graphically. Favorable comparisons with previously published work on various special cases of the problem are obtained.  相似文献   

13.
The impacts of viscous dissipation, Brownian motion, and the thermophoresis caused by temperature gradient on the steady two-dimensional incompressible chemically reactive and radiative flow of traditional fluid through an exponentially stretched sheet embedded in a Darcy porous media are explored by approaching boundary layer analysis. A magnetic field effect is also addressed along the transverse direction of the horizontal stretched sheet. With the implementation of some suitable nondimensional quantities, the regulating nonlinear partial differential equations, which represent the flow geometry, are transformed into coupled nonlinear ordinary differential equations. To acquire the numerical findings from this set of equations, a three-stage Lobatto IIIa, in-built MATLAB scheme named, Bvp4c is used. The effects of the dimensionless physical factors on the flow, heat, and concentration profile, as well as on the coefficient of drag force and the rate of thermal and mass transit at the surface, are graphically and numerically depicted. The thermal profile, as well as the magnitude of the coefficient of the drag force and the Sherwood number, is found to be escalated with the Darcy–Forchheimer factor, but the depreciation in the value of temperature gradient at the wall is noticed for the same.  相似文献   

14.
This paper investigates a theoretical model of a mixed convective Oldroyd-B nanofluid with thermal radiation and activation energy effects. A thorough analysis is done by employing the nonhomogeneous Buongiorno model in the presence of velocity slip and suction. The surface is porous in nature, and nanoparticle mass flux is maintained passively at the surface. The thermal and concentration equations are modeled with the Cattaneo–Christov theory of heat and mass flux, respectively. Proper transformations are utilized for the conversion of transport equations and boundary conditions. The similarity solution is obtained through a numerical approach by utilizing the Runge–Kutta–Fehlberg method and shooting technique. The vital outcomes of this study and the influence of controlling parameters on the flow field, temperature, and concentration profiles are discussed graphically and in a tabular manner. Furthermore, a detailed discussion is provided to explain the results physically. The velocity of the nanofluid increases when the porosity parameter is increased, and temperature decreases with increasing thermal relaxation parameter. The outcomes elucidate that the suction parameter, thermal radiation parameter, and thermal relaxation parameter are positively correlated with the heat transfer coefficient. The result of passive control of nanoparticles at the surface is that the Brownian motion parameter has no influence on the temperature of the Oldroyd-B nanofluid flow and rate of heat transfer at the surface.  相似文献   

15.
The flow of magneto-micropolar nanofluid, that is, the composition of TiO2 nanoparticles in an organic solvent, kerosene, and the normal water past a stretchable surface has been considered. With effectiveness idea on the application in several areas, the Darcy–Forchheimer inertial drag and the second-order velocity slip approach are vital for the current investigation. The influence of viscous, Joule and Darcy dissipations on the energy transfer cannot be neglected due to the interaction of the body forces characterized by magnetic and porosity of the medium. The dissipative heat energy with the heat generation/absorption is useful for the enhancement in the fluid temperature. Due to the complexity of the problem, a numerical solution is implemented using the in-built code bvp5c with the help of MATLAB software. The physical properties abide by the characterizing parameters that appeared in the flow profiles are presented via graphs and the computed results for the rate coefficients are also displayed through table both for water- and kerosene-based nanofluids. Finally, the main findings of the results are: the growth in the shear rate coefficient is marked due to the inclusion of second-order slip, and an attenuation in the fluid velocity is rendered with an increase in the volume fraction whereas impact is reversed in the case of nanofluid temperature.  相似文献   

16.
The focus of this study is on computational grid-manipulation to enhance the accuracy, convergence, and computational efficiency of the multidomain bivariate spectral local linearization method (MD-BSLLM). The improved method is used in the scrutiny of Darcy–Forchheimer bioconvection flow of Carreau–Yasuda nanofluid induced by an oscillatory moving surface with cross-diffusion, activation energy with binary chemical reactive species, combined electrical and magnetohydrodynamic field effects. The proposed method is utilized in solving the nondimensional form of the flow equations. Sensitivity and error analyses are provided to aid an understanding of the efficiency, stability, convergence rate, and accuracy of the iterative scheme. The impact of different parameter values on fluid properties and transport phenomena is discussed. Numerical simulation has indicated that the overlapping grid MD-BSLLM is computational efficacious, and produces stable and sufficiently accurate results using a few collocation nodes in each respective subinterval and the entire computational domain. Other findings include the fact that fluid properties are enhanced with injection while flow characteristics are improved with suction. Using the Darcy–Forchheimer model in the flow analysis improves the temperature of the nanofluid. The imposition of electric field augments nanofluid velocity, the amplitude of skin friction coefficient, rates of mass, and motile microorganisms transfer while reducing the rate of heat transfer. The considered flow analysis can contribute towards engineering solicitations in paper production, polymer solution, metal extrusion, and glass blowing.  相似文献   

17.
Immiscible flow of heavy oil in a porous formation by high temperature pressurized water has been numerically studied. The physical region is a square domain in the horizontal plane with low and high pressure points at the opposite corners along one of the diagonals. Water, the invading fluid, when introduced at high pressure displaces the in situ oil towards the low pressure production zone. The extent of displacement of oil by water through the porous medium in a given amount of time and the appearance of preferential flow paths ( fingers) is the subject of the present investigation. The resistance to water–oil movement arises from the viscous forces in the fluid phases and the capillary force at their interface. Based on their relative magnitudes, various forms of displacement mechanisms can be realized. As the viscosity ratio of heavy oil to water is large, viscous forces in the oil phase become dominant and constitute the major factor for controlling the flow distortions in the porous formation. A mathematical model that can treat the individual fluid pressures, capillary effects and heat transfer has been employed in the present work. A fully implicit, two-dimensional numerical model has been used to compute the pressure and temperature fields. The domain decomposition technique has been adopted in the numerical solution since the problem is computationally intensive. Naturally occurring oil-rich reservoirs to which the present study is applicable are inhomogeneous and layered. A qualitative study has been carried out to explore the effect of permeability variations on the flow patterns. Numerical calculations show that non-isothermal effects as well as layering promote the formation of viscous fingers and consequently the sweep efficiency of the high pressure water front.  相似文献   

18.
The theory of viscous fluid flow through convergent and divergent channels has many applications in chemical, aerospace, civil, biomechanical, mechanical, and environmental engineering. It also plays a role in sympathetic rivers and canals and in human anatomy, in how capillaries and arteries are linked. In this study, we developed a new operational matrix of integration with the Hermite wavelet. We proposed a new method called the Hermite wavelet method (HWM) to solve the highly nonlinear Jeffery–Hamel flow problem. The proposed technique is beneficial and appropriate for solving nonlinear differential equations. Furthermore, the outcomes are compared with other techniques such as differential transformation method, homotopy perturbation method, variational iteration method, and Runge–Kutta method in the literature, revealing that the current method's solution is better than those of other methods. The obtained results show that HWM is more satisfactory and precise than the other known techniques in the literature. Also, the property of Reynolds number, convergent, and divergent replica of the channel on applications of the Jeffery–Hamel flow is discussed.  相似文献   

19.
The porous media transport theories are thoroughly operative to analyse transferral phenomenon in reducing the bio-convective flow instabilities and biological tissues. The present study is designed to investigate the heat transfer phenomena in nanofluidic system involving Cu ? H2O over the stretched porous media with the strength of stochastic solver via Levenberg-Marquardt backpropagation networks. The mathematical model of physical phenomena is described in PDEs that are reduced to system of ODEs through scaling group transformations. The datasets are determined through explicit Runge-Kutta numerical method and used as a target parameter for the development of continuous neural networks mapping. The training, testing and validation processes are utilized in learning of neural network models based on backpropagation of Levenberg-Marquardt technique to determines the solution of different scenarios constructed on the various values of porosity parameter along with six different cases based on the stretching ratio values. Validation and verification of neural network model to find the solution of nanfluidic problem is endorsed on the assessment of achieved accuracy through mean squared error, error histograms and regression studies.  相似文献   

20.
This paper presents some novel problems associated with the steady natural convection flow in an inclined square cavity filled with a saturated porous medium. The proposed method is a high-accurate spectral method based on the Fourier–Galerkin technique. The numerical results have demonstrated the advantage for the following reasons. (a) The high-accurate method deals with inclined geometries successfully. (b) The streamlines, isotherms, and the average Nusselt numbers are affected significantly by the inclination of the cavity for high values of Rayleigh number. (c) In contrast with the finite element method a highly accurate and efficient solution with less computational effort is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号