首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Peristaltic transport of Newtonian nanofluid in an inclined annulus terms of radii regarding peristalsis and elasticity. It is noticed that with an increase in amplitude ratio, flux is getting enhanced in the absence of nanoparticles when compared with viscous fluid with nanoparticles. Our results reduce to the corresponding ones of Rubinow and Keller as a special case for the viscous flow in an elastic tube. The effect of various emerging parameters bounded by two concentric cylinders is studied under the assumption of long wavelength and dominance of viscous effects over inertial effects. The outer cylinder is elastic in nature and has a sinusoidal wave traveling down in its wall, whereas the inner cylinder is rigid. Analytical solutions have been established for velocity, flux, pressure rise, temperature distribution, and nanoparticle concentration. The flux, pressure rise, and frictional forces have been obtained in on the flow characteristic are presented and discussed. Obtained results may be useful in understanding the behavior of peristaltic transport of blood flow in small blood vessels and blood flow through elastic arteries.  相似文献   

2.
In this article, micropolar nanofluid boundary layer flow over a slanted stretching surface with Soret and Dufour effect is studied. The inclined stretching surface in this study is considered permeable and linear. In this problem, the Buongiorno model is considered for thermal efficiencies of fluid flow in the existence of Brownian movement and thermophoresis properties. The nonlinear problem for Micropolar Nanofluid flow over the slanted channel is developed to think about the heat and mass exchange phenomenon by incorporating portent flow factors to strengthened boundary layers. In this study, nonlinear partial differential equations are converted to nonlinear ordinary differential equations by utilizing appropriate similarity transformations then elucidated the numerical outcomes by the Keller-Box technique. An examination of the set-up results is performed with accessible outcomes and perceived in a good settlement without involved impacts. Numerical and graphical outcomes are additionally displayed in tables and charts.  相似文献   

3.
Heat transference in fluid mechanism has a deep influence in real-life applications like hot-mix paving, recovery of energy, concrete heating, heat spacing, refineries, distillation, autoclaves, reactors, air conditioning, and so forth. In this attempt, findings related to energy exchange with features of infinite shear rate viscosity model of Carreau nanofluid by placing inclined magnetic dipole over the wedge are made. The main role in the transportation of heat is exercised by incorporating facts of r adiation, nonuniform heat sink source, Brownian motion, thermophoresis, and chemical reaction. The mathematical system of the infinite shear rate viscosity model of Carreau nanofluid gives a system of partial differential equations and furthermore, these are moved into ordinary differential equations. A numerical procedure is applied via shooting/bvp4c to obtain numerical results. Inclined magnetic dipole gives a lower velocity of Carreau nanofluid. Due to the relaxation time factor velocity of Carreau fluid gets down. A* causes to generate the heat internally, so due to this, temperature increases rapidly. The increasing rate of temperature is found very high for the growing Hartmann number. The rate of mass transport becomes low for gradual increment in the parameter of thermophoresis, wedge angle, and Prandtl. Inclined magnetic dipole gives a lower velocity of Carreau nanofluid. Due to the relaxation time factor, the velocity of the Carreau fluid goes down. The absence and presence of magnetic numbers have no influence on velocity, temperature, and concentration files for Le, Rd, θf, γ, We, β, Pr, Nb, Nt, A.  相似文献   

4.
The inflated heat transport rate of nanofluids is of great interest to researchers. Conviction of nanosuspension with an enhanced model under the consideration of inclined magnetic field is also vital for the enhancement of heat transport rate. Therefore, in this article, an inclined magnetic field has been considered during a boundary layer flow over an extending sheet, with the sheet being permeable. The sequels of heat radiation, thermophoresis, and Brownian parameters are also taken into consideration in this study. The importance of the study is the slip boundary conditions used for velocity, temperature, and concentration. A set of nonlinear partial differential equations is transformed into ordinary differential equations with a suitable choice of similarity variables. The set of first-order differential equations is quite difficult to solve analytically. Therefore, the numerical Runge-Kutta-Fehlberg method, accompanied with shooting technique, is used. The results of the physical components characterizing the flow phenomena, such as magnetic parameter, thermal radiation, thermophoresis, Brownian parameter, and slip parameters, are elaborated through graphs. The numerical results of physical quantities of attention are presented in tables. The existing outcome conforms to that of the previous published result in a particular case.  相似文献   

5.
Numerical analysis is performed for incompressible Maxwell nanofluid model flow under the implications of thermophoresis and inclined magnetic field over a convectively stretched surface. The system that comprises differential equations of partial derivatives is remodeled into the system of ordinary differential equations via similarity transformations and then solved through by Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerge from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. The significant outcomes of the current investigation are that the velocity field decays for higher fluid parameters while that peter out the fluid temperature. Further, the heat transfer rate is reduced with the incremental values of fluid and thermophoresis parameters while it uplifts with Biot and Prandtl numbers.  相似文献   

6.
The present article explores steady, incompressible, and electrically conducting viscous hybrid-nanofluid flow through an impermeable slender stretching sheet. We have opted for water (H2O) as base fluid and two nanoparticles namely Al2O3 and graphene for the hybrid-nanofluid. The consequence of nonuniform magnetic field and Hall current is accounted for in the flow distribution. Zero mass-flux boundary conditions have been included here. The leading partial differential equations of the acknowledged model revise to similarity variables. Next, the subsequent equations are numerically solved by a shooting scheme based on Runge–Kutta fourth-order procedure. The consequences of boosting flow factors on transport systems are achieved accurately through the requisite figures and charts. Concentration outlines are dual in nature when the wall-thickness factor intensifies. The rate of heat and mass transmit augments with wall-thickness factor.  相似文献   

7.
Working nanoliquids are used in bionomical concerns and to enhance the energy in the refrigeration system. The unique thermophysical characteristics of nanoliquids made nanoscience interesting and beneficial for fields of engineering, medical, and industry with real applications, like, food science, employing nanoparticles to deliver drugs, food microbiology, detection of foodborne pathogens, detection of foodborne pathogens, electronic device cooling, controlling fusion, magnetic cell separation, cancer therapeutics, nanocryosurgery, and so forth. The aim of this study is to deliver a broad analysis on nanoscale energy exchange and inclined magnetic dipole impact with the mathematical model of cross nanofluid. Scrutiny of movement of fluid is made by placing the magnetic dipole and buoyancy force. Transport of energy is investigated by thermal radiation, nonuniform heat sink–source while checking of mass transfer facts of activation energy and the chemical process is taken into consideration. Moreover, the nanostructured concepts of thermophoresis and Brownian movement along with zero-mass flux constraint are also utilized for the comprehensiveness of this study. Mathematical relations of cross nanofluid are processed with similarity transformation, shooting methodology, and bvp4c Matlab procedure is rehearsed to get the numerical results of this attempt.  相似文献   

8.
The study of shape effects in nanofluids plays a vital role in the fluid flow as well as heat propagation. Hence, the different shape factors of molybdenum disulfide MoS2 on a stretchable disc with rotation under the effect of the magnetic field, chemical response, and activation energy are examined. The set of partial differential equations is converted into ordinary differential equations (ODEs) by using von Karman's transformations, and the obtained ODEs are solved by using Runge-Kutta-Fehlberg 45 and shooting techniques. The numerical computations are made by utilizing well-known maple 17 software. The different physical parameter effects on velocity, temperature, and concentration curves, as well as skin friction and Sherwood numbers, are analyzed through graphs. It is noted that the larger values of solid volume fraction enhances the drag coefficient and reduces the rate of heat transfer. It is further observed that the curve of a viscous fluid is always lesser than curve of a nanofluid.  相似文献   

9.
In the present paper, the augmented heat characteristics of a hybrid nanofluid which is a blend of Al2O3 (alumina) and Ag (silver) in the host hybrid fluid (C2H6O2-H2O) (50%–50%) impinging obliquely on an elastic surface with magnetic lines of force are investigated. The properties of the nanofluid are assessed through the computational solutions established with the aid of the popular Runge–Kutta–Fehlberg fifth-order (RKF 5) numerical technique. Outputs of the analysis reveal that the rate of thermal energy transport in the hybrid (mono) nanofluid is enhanced by 11.5% (5.8%) by using blade-shaped nanoparticles in comparison to that of the spherical particles. Stream contours of both nanofluids are inclined to the left (right) of the stagnation-point for positive (negative) values of the stagnation flow parameter.  相似文献   

10.
On the account of industrial and technological applications, the enhancement of energy by inserting nanoparticles is a hot topic in the present century. Therefore, the current analysis presents a theoretical analysis regarding the flow of electrically conducted Maxwell nanofluid over a stretching surface in the presence of the gyrotactic microorganism. In addition, the influence of thermal conductivity and Arrhenius activation energy are considered. By using the apposite transformation, the system of contemporary partial differential expressions is first converted into nonlinear ordinary differential system. The set of these transmuted equations is solved with the help of the shooting method. Reliable results are obtained for the velocity profile, temperature, motile microorganism density and concentration. It is evaluated that by increasing the value of bioconvection Peclet and Lewis numbers, the microorganism distribution exhibited diminishing behavior. These results may be useful in improving the efficiency of heat transfer devices and microbial fuel cells.  相似文献   

11.
This article focuses on the three-dimensional Cross fluid flow of a radiative nanofluid over an expanding sheet with aligned magnetic field, chemical reaction, and heat generation phenomenon. The stretching sheet has convective heat and slip boundary conditions. The similarity variables are properly used for the conversion of a dimensional mathematical model into a nondimensional one. The transformed ordinary differential equations are handled for the numerical outcomes of the suggested fluidic model by incorporating the shooting scheme. Furthermore, the numeric investigations are also compared by bvp4c MATLAB built-in package. In a limited case, both the techniques are checked with already published articles, thereby revealing good agreement. Furthermore, the effects of few parameters like Prandtl number, Weissenberg number, heat generation, stretching rate parameter, magnetic parameter, thermal radiation, Brownian and thermophoresis parameters, and Lewis number on concentration, temperature, and velocity profiles have been presented using figures and numerical tables. The strong intensity of the magnetic field across the fluid and increment in the inclination angle (ϑ) result in a lower velocity profile. Temperature is more prominent for the higher slip mechanism. Furthermore, there in an increase in thermophoretic force, which pushes the nanoparticles, and this mixing of nanoparticles helps to increase the concentration profile. A higher Cross fluid index responds to a larger velocity.  相似文献   

12.
In the present paper, the hybrid meshfree method with parallel algorithm has been implemented to simulate natural convection inside a wavy square enclosure with a line heat source placed on the right vertical wall of the cavity. The fluid is assumed to be a Cu-waterbased nanofluid where single-phase model is used in two dimensions. The computations are performed for variation of the Rayleigh number, Hartmann number, positions of the heat source as well as size of the heat source. The results are shown in terms of streamlines, isotherms, and Nusselt numbers. Such problems have direct applications for effective cooling or heating of the enclosures with the heat sources.  相似文献   

13.
14.
In this mathematical presentation, we examined the significance of Hall current on MHD buoyancy-driven boundary layer flow of a Ti6Al4V-H2O based nanofluid past a vertical surface implanted in a uniform permeable region. The vertical surface is considered to be magnetized and induced magnetic field (IMF) impacts are also considered. The nondimensional flow model is solved with the assistance of the two-term perturbation scheme. Various results are obtained by numerical computation for different significant parameters. These results are presented and analyzed in graphical and tabular form. In the boundary layer domain, the transpiration velocity across the surface tends to diminish the main flow, IMF along the main flow, fluid temperature, and concentration. It is remarkably noted that IMF along the main flow grows for incrementing values of volume fraction coefficient of nanofluid. In the magnetic boundary layer domain, the main flow and IMF along the main flow grow with Hall current. Furthermore, it is seen that for the progressing values of magnetic Prandtl number, the main flow reduces while normal flow and IMF along the main flow is induced in the boundary layer domain.  相似文献   

15.
In this article, the combined magneto‐hydrodynamic heat, momentum, and mass (species) transfer in external boundary layer flow of Casson nanofluid from a vertical cone surface with convective conditions under an applied magnetic field is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer convective conditions. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multidegree, nonsimilar PDEs consisting of the momentum, energy, and concentration equations via appropriate nonsimilarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second‐order, accurate finite difference method of the implicit type. The influences of the emerging parameters, that is, magnetic parameter (M), Casson fluid parameter (β), Brownian motion parameter (Nb), thermophoresis parameter (Nt), Lewis number (Le), Prandtl number (Pr), velocity slip (Sf) and thermal slip (ST) on velocity, temperature, and nanoparticle concentration distributions is illustrated graphically and interpreted at length. Validation of solutions with a Nakamura tridiagonal method has been included. The study is relevant to enrobing processes for electrically conductive nanomaterials, of potential use in aerospace and other industries.  相似文献   

16.
17.
This study explores the entropy generation analysis on unsteady nonlinear radiative ethylene glycol-based Casson nanofluid flow near stagnation point towards a stretching sheet through a porous medium. Analysis has been accomplished in the presence of an inclined magnetic field, heat generation, homogeneous–heterogeneous reactions, and viscous dissipation with velocity slip and convective boundary conditions. The nondimensional governing equations are solved by the shooting technique with the help of the RK45 method. We have experimented with copper and silver nanoparticles and a comparative analysis has been highlighted for both copper and silver nanofluids. Numerical outcomes are executed by the MATLAB built-in bvp4c function. The consequences of the experiment for various pertinent flow parameters are portrayed by graphs and tables for both the Ag- and Cu-Casson nanofluids. Results reveal that the enhancement of nanoparticles volume fraction accelerates temperature but it slows down concentration and velocity distributions. Higher values of the Eckert number boost velocity and temperature but reduce skin friction coefficient and Nusselt number. Enhancement of the Brinkman number boosts up entropy generation but it slows down Bejan's number. The results of the model can be applied in the movement of biological fluids, separation of biomolecules, glass manufacturing, paper production, food processing, crude oil purification, polymer drag reduction, and cooling atomic reactors.  相似文献   

18.
Hybrid photovoltaic thermal system is an effective method to convert solar energy into electrical and thermal energy. However, its effectiveness is widely affected due to the high temperature of photovoltaic panel, and it can be minimized by employing nanofluids to the PV/T systems. In this research, the effect of various nanoparticles on the PV/T systems was studied experimentally. The nanofluids Al2O3, CuO, and multiwall carbon nanotube (MWCNT) were dispersed with water at different volume fractions of 0, 0.5, 1, 2.5, and 5 (vol%) using ultrasonication process. The effect of nanomaterials on viscosity and density was classified. All tests were carried out in an outdoor laboratory setup for calibrating the PV temperatures, thermal conductivity, electrical power, electrical efficiency, and overall efficiency. In addition, the energy analyses were also made to estimate the loss of heat owing to the nanofluids. Results show that use of the nanofluid increased the electric power and electrical efficiency of PV/T compared with water. Furthermore, MWCNT and CuO reduced the cell temperature by 19%. Consequently, the nanofluids MWCNT, Al2O3, and CuO produced the impressive values of 60%, 55%, and 52% increase in an average electrical efficiency than conventional PV. Particularly, the MWCNT produced superior results compared with other materials. It is evidently clear from the result that the introduction of the nanofluid increases the thermal efficiency without adding any extra energy to the system. Moreover, insertion of Al2O3, CuO, and MWCNT on PV/T system increases the exergy efficiency more than conventional PV module.  相似文献   

19.
20.
Unsteady bioconvection Darcy-Forchhiemer nanofluid flow is considered in the current investigation in the presence of micro-organisms. The flow is exposed to thermal radiation and a uniform magnetic field in a horizontal channel. The impacts of Brownian motion and thermophoresis are also considered for the flow problem. The unsteady governing equations are modeled and transformed into a nondimensional form by employing a suitable group of similar variables. The solution of the modeled equations is determined by the semianalytical method homotopy analysis method. The features of flow characteristics such as temperature, concentration, velocity, and the motile micro-organism distributions in response to the variations of the emerging parameters are simulated and examined in detail. Among the many results of the study, it is found that velocity upsurges with rising values of the unsteadiness parameter while declining with growth in the magnetic, inertial, and porosity parameters. Temperature augments with growing estimations of Brownian, unsteadiness, and radiation parameters and declines with enhancing values of Prandtl number. Amassed estimations of the Brownian factor reduce the concentration of nanoparticles while growing values of thermophoresis, unsteadiness parameters, and Schmidt number increase it. Moreover, the motile micro-organism profile is a reducing function of the bioconvection Lewis numbers, Peclet, and bioconvection concentration difference parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号