首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
This paper analyzes the mixed convection flow and transport of heat in a hybrid nanofluid via an exponentially extending/contracting surface. Joule heating, magnetic field, permeability of a porous medium, thermal radiation, and slip condition are taken into consideration. Magnetite (Fe3O4) and copper (Cu) are used as a mixture of nanoparticles while ethylene glycol as a regular liquid. The paradigm is dissolved by utilizing the method of Runge–Kutta–Fehlberg with the shooting technique in MATLAB software. The effect of controlling parameters on the coefficient of drag force, heat transfer coefficient, and the distributions of temperature and velocity for physical parameters are discussed numerically, physically, and graphically. The outcomes ended up illustrating that the transport of heat is diminished by upsurging the Joule heating and magnetic field parameters for both contracting and extending states. For larger values of permeability parameter and parameter of mixed convection, the coefficient of local skin friction upsurges in extending situations.  相似文献   

2.
Irreversible losses and heat transport in a magnetohydrodynamic flow of a viscous, steady, incompressible, and fully developed couple stress Al2O3–water nanofluid through a sloping permeable wall channel with porous medium and under the effect of radiation heat flux and slip were analyzed. The fundamental equations were solved numerically by using Runge-Kutta together with the shooting technique and the results were in qualitative agreement with an exact solution obtained for a limit case. The impacts of couple stress, Darcy number, solid nanoparticle concentrations, conduction-radiation parameter, Hartmann number and hydrodynamic slip on flow, temperature, heat transport, and entropy production were examined. It was possible to achieve values of minimum entropy production not yet reported in previous studies. In this way, optimal values of couple stress and slip were obtained. The heat transport was also explored and optimal values of slip flow and conduction-radiation parameter with maximum heat transfer were found. Finally, in addition to the alumina, the distributions of velocity, temperature, and entropy generation in TiO2–water and Cu–water were presented for different solid nanoparticle concentrations. It was obtained that the local entropy of TiO2–water was lower than Cu–water and Al2O3–water in the channel bottom region while it was greater in the upper region.  相似文献   

3.
The effect of local thermal nonequilibrium (LTNE) on the entropy generation and heat transfer characteristics in the magnetohydrodynamic flow of a couple-stress fluid through a high-porosity vertical channel is studied numerically using the higher-order Galerkin technique. The Boussinesq approximation is assumed to be valid and the porous medium is considered to be isotropic and homogeneous. Two energy equations are considered one each for solid and fluid phases. The term involving the heat transfer coefficient in both equations renders them mutually coupled. Thermal radiation and an internal heat source are considered only in the fluid phase. The influence of inverse Darcy number, Hartmann number, couple-stress fluid parameter, Grashof number, thermal radiation parameter, and interphase heat transfer coefficient on velocity and temperature profiles is depicted graphically and discussed. The entropy generation, friction factor, and Nusselt number are determined, and outcomes are presented via plots. The effect of LTNE on the temperature profile is found to cease when the value of the interphase heat transfer coefficient is high, and in this case, we get the temperature profiles of fluid and solid phases are uniform. The physical significance of LTNE is discussed in detail for different parameters' values. It is found that heat transport and friction drag are maximum in the case of LTNE and minimum in the case of local thermal equilibrium. We observe that LTNE opposes the irreversibility of the system. The corresponding results of a fluid-saturated densely packed porous medium can be obtained as a limiting case of the current study.  相似文献   

4.
Combined heat transfer characteristics were obtained numerically for three-dimensional natural convection and thermal radiation in a long and wide vertical porous layer with a hexagonal honeycomb core. We assumed that the porous layer was both homogeneous and isotropic. The pure Darcy law for fluid flow and Rosseland's approximation for radiation were used. The numerical methodology was based on an algebraic coordinate transformation technique and the transformed governing equations were solved using the SIMPLE algorithm. The effect of radiation on the heat transfer characteristics was investigated over a wide range of radiation numbers and temperature ratios for two Darcy-Rayleigh number values (Ra* = 100 and 1000) and for a fixed aspect ratio of H/L = 1. The results are presented in the form of combined radiation and convection heat transfer coefficients and are compared with the corresponding values for pure natural convection. © 1999 Scripta Technica, Heat Trans Asian Res, 28(4): 278–294, 1999  相似文献   

5.
Combined natural convection and radiation heat transfer characteristics in a vertical porous layer with a hexagonal honeycomb core were investigated experimentally. The temperature distributions on the honeycomb core wall and the combined heat transfer rates through the porous layer were measured. The measurements of the heat transfer were accomplished using the guarded hot plate method. The honeycomb core wall was made of paper and large-mesh foamed resins were inserted into the honeycomb enclosures. The measurements were performed by varying the radiation parameters between 0.5 and 0.65, varying the temperature ratios between 0.01 and 0.1, and varying the Darcy-Rayleigh numbers between 5 and 80, and for a fixed aspect ratio H/L = 1. The experimental results for Nusselt numbers agreed well with our available numerical results. © 1999 Scripta Technica, Heat Trans Asian Res, 28(4): 295–306, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号