首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
Safflower oil-based oleogels were produced from beeswax and rice bran wax. Oleogels demonstrated higher oxidative stability than shortening at the cooking temperature. Peroxide values in shortening, rice bran wax oleogels, and beeswax oleogels samples were found in the range of 4.8–27.76, 13.21–20.45 and 4.30–7.72 meqO2kg−1 oil. Following oleogelation, there was no significant change in fatty acid composition of safflower oil. In addition, after baking process, the changes in the major fatty acids were not determined to be significant. Solid fat content ratios (carried out at 35°C) of rice bran wax oleogels, in beeswax oleogels and in shortening samples were defined in the range of 4.10%–7.70%, 0.80%–5.00%, and 9.61%, respectively. The highest oil binding capacity was revealed in beeswax oleogels with 99.93%–99.98%. The shortest crystallization time was determined as 3 min in oleogel containing 10% rice bran wax. Cakes consisted of oleogel were acceptable in terms of texture and sensory properties compared to cake produced with shortening. Sensory results revealed that some cakes produced with oleogels were found to be more acceptable as compared with control group samples. In this respect, oleogels produced with safflower oil-based beeswax and rice bran wax could be used instead of commercial solid fat widely used in the cake industry.  相似文献   

2.
Oleogelation is emerging as one of the most exigent oil structuring technique. The main objective of this study was to formulate and characterize rice bran/sunflower wax-based oleogels using eight refined food grade oils such as sunflower oil, mustard oil, soybean oil, sesame oil, groundnut oil, rice bran oil, palm oil, and coconut oil. Stability and properties of these oleogels with respect to oil unsaturation and wax composition were explored. Sunflower wax exhibited excellent gelation ability even at 1%–1.5% (w/v) concentration compared to rice bran wax (8%–10% w/v). As the oleogelator concentration increased, peak melting temperature also increased with increase in strength of oleogels as per rheological studies. X-ray diffraction and morphological studies revealed that oleogel microstructure has major influence of wax composition only. Sunflower wax oleogels unveiled rapid crystal formation with maximum oil binding capacity of 99.46% in highly unsaturated sunflower oil with maximum polyunsaturated fatty acid content. Further, the applicability of this wax based oleogels as solid fat substitute in marketed butter products was also scrutinized. The lowest value of solid fat content (SFC) in oleogel was 0.20% at 25°C, resembling closely with the marketed butter products. With increase in oil unsaturation, oleogels displayed remarkable reduction in SFC. Depending upon prerequisite, oleogel properties can be modulated by tuning wax type and oil unsaturation. In conclusion, this wax-based oleogel can be used as solid fat substitute in food products with extensive applications in other fields too.  相似文献   

3.
Oleogels were prepared with 5% wax in soybean oil using mixtures of beeswax (BW) and candelilla wax (CLW) with ratios of 10:90, 30:70, 50:50, and 60:40 BW:CLW, and the same series where 10% of the total wax was substituted with sunflower wax (SFW). The hypothesis that SFW would increase the firmness of the oleogels without affecting the melting properties was tested. Firmness of one-wax oleogels decreased from SFW > CLW > BW. Oleogels with 50:50 BW:CLW and 60:40 BLW:CLW had equal firmness to pure 5% SFW oleogels. SFW significantly increased oleogel firmness and reduced the softening that occurred between 4°C and 22°C. Increased firmness was also found with rice bran wax and behenyl-behenate (C44) addition, but not with wax esters with chain lengths ranging from 30 to 40 carbons (C30 to C40). By differential scanning calorimetry, SFW significantly decreased the melting point of oleogels with 10:90 and 30:70 BW:CLW mixtures but significantly increased the melting point of those with 50:50 and 60:40 BW:CLW mixtures. However, the solid fat content melting curves were not significantly influenced by SFW addition. These results indicate that mixed wax oleogels had greater hardness and elasticity, and that the long chain wax esters contributed by SFW helped to improve the strength of oleogels without negatively affecting their melting properties.  相似文献   

4.
5.
Physical refining of rice bran oil in relation to degumming and dewaxing   总被引:15,自引:7,他引:8  
Physical refining of rice bran oil (RBO) with acidity between 4.0 and 12.4% has been investigated in relation to degumming and dewaxing pretretments. It appears that physical refining after combined low-temperature (10°C) degumming-dewaxing produces good-quality RBO with respect to color, free fatty acid, oryzanol, and tocopherol content.  相似文献   

6.
In this study, the effect of sesame oil (SEO) and rice bran oil (RBO) on the rancidity of canola oil (CAO) during the process of frying potato pieces at 180 °C was investigated. The SEO and RBO were added to the CAO at levels of 3 and 6%. Frying stability of the oil samples during the frying process was measured on the basis of total polar compounds (TPC) content, conjugated diene value (CDV), acid value (AV), and carbonyl value (CV). In general, frying stability of the CAO significantly (P < 0.05) improved in the presence of the SEO and RBO. The positive effect of the SEO on the stability of the CAO was more than that of the RBO. Increasing the amounts of SEO and RBO from 3 to 6% led to decreases in the TPC and AV, and increases in the CDV and CV of the CAO during the frying process. The best frying performance for the CAO was obtained by use of 3% of both SEO and RBO together (CAO/SEO/RBO, 94:3:3 w/w/w).  相似文献   

7.
Supercritical CO2 extraction of rice bran   总被引:3,自引:0,他引:3  
Extraction of rice bran lipids with supercritical carbon dioxide (SC-CO2) was performed. To investigate the pressure effect on extraction yield, two isobaric conditions, 7000 and 9000 psi, were selected. A Soxhlet extraction with hexane (modified AOCS method Aa 4–38; 4 h at 69°C) was also conducted and used as the comparison basis. Rice bran with a moisture content of 6%, 90% passable through a sieve with 0.297 mm opening, was used for extraction. A maximum rice bran oil (RBO) yield of 20.5%, which represents 99+% lipid recovery, was obtained with hexane. RBO yield with SC-CO2 ranged between 19.2 and 20.4%. RBO yield increased with temperature at isobaric conditions. At the 80°C isotherm, an increase in RBO yield was obtained with an increase in pressure. The pressure effect may be attributed to the increase in SC-CO2 density, which is closely related to the value of the Hildebrand solubility parameter. RBO extracted with SC-CO2 had a far superior color quality when compared with hexane-extracted RBO. The level of sterols in SC-CO2-extracted RBO increased with pressure and temperature.  相似文献   

8.
The microstructure, melting and crystallization behavior, rheological properties and oil binding capacity of crystalline networks of plant-derived waxes in edible oil were studied and then compared amongst different wax types. The critical concentrations for oleogelation of canola oil by rice bran wax (RBX), sunflower wax, candelilla wax, and carnauba wax were 1, 1, 2, and 4 %, respectively, suggesting RBX and sunflower wax are more efficient structurants. A phenomenological two-phase exponential decay model was implemented to quantify the oil-binding capacity of these oleogels. Parameters obtained from this empirical model were then evaluated against microscale structural attributes such as crystal size, mass distribution and porosity to determine the structural dependence of oil-binding capacity. Gels containing candelilla wax exhibited the greatest oil-binding capacity, as they retained nearly 90 % of their oil. This is due to the small crystal size as well as the spatial distribution of these crystals. Using a microscopic to macroscopic approach, this study examines how the structural characteristics unique to each wax and resulting oleogel system affect functionality and macroscopic behavior.  相似文献   

9.
In this paper, gelatin and xanthan are applied to produce a foam‐templated oleogel. For this reason, the oleogel is prepared at different concentrations of biopolymers and the properties of solution, cryogel, and related oleogel are determined. The results show that xanthan addition increases viscosity and foam stability of solution. Also, an increment in biopolymer concentration increases cryogel network density (ND) and firmness but has no significant effect on moisture sorption. The oil binding capacity of all oleogels is >92%. In terms of high foam stability (96.87 ± 4.42), low ND (0.016 ± 0.00), and consequently suitable oil sorption (46.10 ± 4.40), the oleogel containing 3% gelatin and 0.2% xanthan is selected as the best sample. Complementary tests exhibit that the oleogel, with thixotropic behavior and 60% structural recovery, can bind the oil at temperature <100 °C. The oleogel network can protect the edible oil from oxidative reaction during 2 month storage. Nonetheless, more studies are needed to attest the application of this oleogel type in food products. Practical Application: Biopolymers of gelatin and xanthan are GRAS and available so that they are applied in many food products. This research shows that the cryogel of these biopolymers, as a hydrophilic oleogelator, can be utilized to structure oil and produce oleogel in an indirect method. This procedure that forms strong gel and keeps oil even at high temperatures can be of interest to scientists who are searching for solid fat substitutes in food products such as cakes, biscuits, and muffins.  相似文献   

10.
Autocatalytic esterification of free fatty acids (FFA) in rice bran oil (RBO) containing high FFA (9.5 to 35.0% w/w) was examined at a high temperature (210°C) and under low pressure (10 mm Hg). The study was conducted to determine the effectiveness of monoglyceride in esterifying the FFA of RBO. The study showed that monoglycerides can reduce the FFA level of degummed, dewaxed, and bleached RBO to an acceptable level (0.5±0.10 to 3.5±0.19% w/w) depending on the FFA content of the crude oil. This allows RBO to be alkali refined, bleached, and deodorized or simply deodorized after monoglyceride treatment to obtain a good quality oil. The color of the refined oil is dependent upon the color of the crude oil used.  相似文献   

11.
The effect of different processing steps of refining on retention or the availability of oryzanol in refined oil and the oryzanol composition of Indian paddy cultivars and commercial products of the rice bran oil (RBO) industry were investigated. Degumming and dewaxing of crude RBO removed only 1.1 and 5.9% of oryzanol while the alkali treatment removed 93.0 to 94.6% of oryzanol from the original crude oil. Irrespective of the strength of alkali (12 to 20° Be studied), retention of oryzanol in the refined RBO was only 5.4–17.2% for crude oil, 5.9–15.0% for degummed oil, and 7.0 to 9.7% for degummed and dewaxed oil. The oryzanol content of oil extracted from the bran of 18 Indian paddy cultivars ranged from 1.63 to 2.72%, which is the first report of its kind in the literature on oryzanol content. The oryzanol content ranged from 1.1 to 1.74% for physically refined RBO while for alkali-refined oil it was 0.19–0.20%. The oil subjected to physical refining (commercial sample) retained the original amount of oryzanol after refining (1.60 and 1.74%), whereas the chemically refined oil showed a considerably lower amount (0.19%). Thus, the oryzanol, which is lost during the chemical refining process, has been carried into the soapstock. The content of oryzanol of the commercial RBO, soapstock, acid oil, and deodorizer distillate were in the range: 1.7–2.1, 6.3–6.9, 3.3–7.4, and 0.79%, respectively. These results showed that the processing steps—viz., degumming (1.1%), dewaxing (5.9%), physical refining (0%), bleaching and deodorization of the oil—did not affect the content of oryzanol appreciably, while 83–95% of it was lost during alkali refining. The oryzanol composition of crude oil and soapstock as determined by high-performance liquid chromatography indicated 24-methylene cycloartanyl ferulate (30–38%) and campesteryl ferulate (24.4–26.9%) as the major ferulates. The results presented here are probably the first systematic report on oryzanol availability in differently processed RBO, soapstocks, acid oils, and for oils of Indian paddy cultivars.  相似文献   

12.
In an effort to develop alternatives for harmful trans fats produced by partial hydrogenation of vegetable oils, oleogels of high‐stearic soybean (A6 and MM106) oils were prepared with sunflower wax (SW) as the oleogelator. Oleogels of high‐stearic oils did not have greater firmness when compared to regular soybean oil (SBO) at room temperature. However, the firmness of high‐stearic oil oleogels at 4 °C sharply increased due to the high content of stearic acid. High‐stearic acid SBO had more polar compounds than the regular SBO. Polar compounds in oil inversely affected the firmness of oleogels. Differential scanning calorimetry showed that wax crystals facilitated nucleation of solid fats of high‐stearic oils during cooling. Polar compounds did not affect the melting and crystallization behavior of wax. Solid fat content (SFC) showed that polar compounds in oil and wax interfered with crystallization of solid fats. Linear viscoelastic properties of 7% SW oleogels of three oils reflected well the SFC values while they did not correlate well with the firmness of oleogels. Phase‐contrast microscopy showed that the wax crystal morphology was slightly influenced by solid fats in the high‐steric SBO, A6.  相似文献   

13.
The role of viscosity on was settling and refining loss in rice bran oil (RBO) has been studied with model systems of refined peanut oil and RBO of different free fatty acids contents. Wax was the only constituent of RBO that significantly increased the viscosity (81.5%) of oil. Monoglycerides synergistically raised the viscosity of the oil (by 114.2%) and lowered the rate of wax settling. Although a reduction in the viscosity of the oil significantly decreased the refining loss, the minimum loss attained was still 20% more than the theoretically predicted value. This led us to conclude that some chemical constituents, such as monoglycerides, must be removed before dewaxing; thereafter, oryzanol and phospholipids have to be removed. One can get an oil free of wax, recover other by-products and reduce processing losses.  相似文献   

14.
The influence of specific factors on in situ methanolic esterification of rice bran oil (RBO) using sulfuric acid catalyst was investigated. using high-FFA rice bran was found to be the most effective means to increase methyl ester yields. The ester content of the extract increased about 67% when the FFA content of oil was increased from 16.6 to 84.5%. Increasing the reaction time beyond 30 min did not affect yields. Increasing the temperature from 20 to 65°C elevated the FAME yield by about 30%, but increasing the amount of acid catalyst above 5 mL did not enhance yield, and increasing the methanol dose from 200 to 250 mL had a negligible effect.  相似文献   

15.
Differential scanning calorimetry (DSC), optical microscopy, and X-ray diffraction (XRD) were used to examine the thermal behavior, crystal structure, and crystal morphology of rice bran wax (RBX) in bulk and oil–wax mixtures, and to compare them with those of carnauba wax (CRX) and candellila wax (CLX). The RBX employed in the present study was separated from rice bran oil by winterization, filtration, refinement, bleaching, and deodorization. The RBX crystals melted in the bulk state at 77–79 °C with ΔH melting = 190.5 J/g, which is quite large compared with CLX (129 J/g) and CRX (137.6 J/g). XRD data of the RBX crystals revealed O subcell packing and a long spacing value of 6.9 nm. Thin long needle-shaped crystals were observed in the mixtures of RBX and liquid oils [olive oil and salad oil (canola:soy bean oil = 50:50)]; therefore, the dispersion of RBX crystals in these liquid oils was much finer than that of CRX and CLX crystals. Organogels formed when the mixture of every plant wax and liquid oil was melted at elevated temperature and cooled to ambient temperature. However, the mixture of RBX and olive oil at a concentration ratio of 1:99 wt.% formed an organogel at 20 °C, whereas the lowest concentration necessary for CRX to form an organogel in olive oil was 4 wt.% and that for CLX was 2 wt.%. Observation of the rate of gel formation using DSC and viscosity measurements indicated that the gel structure formed soon after RBX crystallized, whereas a time delay was observed between the organogel formation and wax crystallization of CRX and CLX. These results demonstrate RBX’s good organogel-forming properties, mostly because of its fine dispersion of long needle like crystals in liquid oil phases.  相似文献   

16.
Curcumin, the bioactive compound found in turmeric, exhibits a wide range of health-promoting properties. However, its application in food formulations and as nutritional supplements is limited by its poor bioaccessibility. This study investigates the effects of curcumin on the structure formation and physical properties of oleogels made with three different concentrations of rice bran wax (RBW) (2%, 6%, and 10% w/w) compared to an ungelled control oil and examines the bioaccessibility of curcumin contained in those lipid systems. The physical and structural properties were characterized using a penetration test, solid fat content, polarized light microscopy, differential scanning calorimetry, and X-ray diffraction (XRD). Data analysis revealed no significant differences in polymorphic or thermal properties between oleogels with and without curcumin; however, differences in microstructural properties were documented for oleogels with curcumin. Moreover, the percent of lipid crystallinity in 6% and 10% RBW oleogel increased in samples containing curcumin. An in vitro simulated digestion study showed that curcumin bioaccessibility significantly increased with increasing RBW content relative to the ungelled control. Results from this study provide insight into the potential utilization of RBW oleogels for delivering curcumin and other poorly water-soluble compounds in food, dietary supplement, pharmaceutical, and cosmetic products.  相似文献   

17.
《分离科学与技术》2012,47(9):1186-1195
The suitable conditions were determined for the recovery of high-value antioxidative compound, γ-oryzanol, from low cost rice bran soapstock by-product of the rice bran oil industry. First, soapstock was saponified and was then dehydrated and extracted with ethyl acetate. The extract was further purified by crystallization twice in appropriate solvent systems. At the most suitable conditions, using 20% v/v of ethyl acetate in methanol, and at 30°C and 1 h for the first crystallization step, and 5°C and 24 h for the second, the yield and purity of γ-oryzanol were 55.17 ± 0.59 wt% and 74.60 ± 4.12 wt%, respectively.  相似文献   

18.
Blends of sunflower oil (SFO) and rice bran oil (RBO) were evaluated for their stability. Additionally, known amounts of natural antioxidants extracted from RBO were added to SFO, and their protective effect was compared to that of the blends. The results found indicate that by raising the amount of RBO, from 10 to 50%, an increase of OLO, OLP, PPL, OOO, PPO, OPO, 18:1 and 16:0 occurred, followed by a decrease of LLL, LLO, and 18:2. These changes in fatty acid and triacylglycerol (TAG) composition led to an increase of the oil stability index at 120 °C and a reduction of polymer TAG formation in the heated blends at 180 °C during 8 h. A comparable protective effect of natural antioxidants to that of blending was observed in a 50 : 50 blend, by remarkably increasing the induction period.  相似文献   

19.
Rapid equilibrium extraction of rice bran oil at ambient temperature   总被引:1,自引:0,他引:1  
Rapid equilibrium extraction of soybean flour has been effective in obtaining an oil with reduced phospholipid content. This technique was examined to obtain a low phospholipid and low free fatty acid rice bran oil (RBO). The amount of RBO extracted with hexane from 1 g of rice bran at 22°C was measured over a 10-min period. The amount of oil extracted from variable amounts of bran with a fixed volume of solvent was also studied. Ninety percent of the oil was extracted in one minute, with 93% of the total RBO being extracted after ten minutes. This compares with the 98% yield obtained from soy flour, but increasing the amount of bran used did not reduce the extraction rate. This extraction method produced a good quality RBO with low phospholipid, low free fatty acid and low peroxide values.  相似文献   

20.
The effects of minor components in crude rice bran oil (RBO) including free fatty acids (FFA), rice bran wax (RBW), γ-oryzanol, and long-chain fatty alcohols (LCFA), on alkali refining losses were determined. Refined palm oil (PO), soybean oil (SBO) and sunflower oil (SFO) were used as oil models to which minor component present in RBO were added. Refining losses of all model oils were linearly related to the amount of FFA incorporated. At 6.8% FFA, the refining losses of all the model oils were between 13.16 and 13.42%. When <1.0% of LCFA, RBW and γ-oryzanol were added to the model oils (with 6.8% FFA), the refining losses were approximately the same, however, with higher amounts of LCFA greatly increased refining losses. At 3% LCFA, the refining losses of all the model oils were as high as 69.43–78.75%, whereas the losses of oils containing 3% RBW and γ-oryzanol were 33.46–45.01% and 17.82–20.45%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号