首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Numerical simulations of low-velocity impact on an aircraft sandwich panel   总被引:2,自引:0,他引:2  
The potential hazards resulting from a low-velocity impact (bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or a leading edge, has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage.

This paper describes the results from experimental and numerical simulation studies on the impact and penetration damage of a sandwich panel by a solid, round-shaped impactor. The main aim was to prove that a correct mathematical model can yield significant information for the designer to understand the mechanism involved in the low-velocity impact event, prior to conducting tests, and therefore to design an impact-resistant aircraft structure.

Part of this work presented is focused on the recent progress on the materials modelling and numerical simulation of low-velocity impact response onto a composite aircraft sandwich panel. It is based on the application of explicit finite element (FE) analysis codes to study aircraft sandwich structures behaviour under low-velocity impact conditions. Good agreement was obtained between numerical and experimental results, in particular, the numerical simulation was able to predict impact damage and impact energy absorbed by the structure.  相似文献   


2.
马健  燕瑛 《复合材料学报》2013,30(1):230-235
为了发展缝合泡沫夹芯复合材料低速冲击损伤的多尺度分析方法, 建立了缝合泡沫简化力学模型, 将缝合泡沫等效为缝线树脂柱增强的正交各向异性芯材, 其材料参数由各组分性能及所占体积分数根据均一化理论计算得出; 同时, 建立冲击试验有限元模型, 通过界面元模拟面板与芯材之间的层间分层。采用GENOA渐进损伤分析模块对缝合结构冲击动态响应过程进行数值模拟, 并将计算结果与试验记录进行对比分析。结果表明: 缝合可以减小面板破坏面积, 抑制面板与泡沫分层的扩展; 但缝纫会对结构造成初始损伤, 较高的缝合密度使芯材刚度增加, 不利于泡沫结构的缓冲吸能。数值模拟结果与试验记录吻合良好, 验证了多尺度分析方法的正确性。  相似文献   

3.
This paper describes the derivation and validation of a numerical material model that predicts the highly dynamic behaviour of CFRP (carbon fibre reinforced plastic) under hypervelocity impact. CFRP is widely used in satellites as face sheet material in CFRP-Al/HC sandwich structures (HC = honeycomb) that can be exposed to space debris. A review of CFRP-Al/HC structures typically used in space was performed. Based on this review, a representative structure in terms of materials and geometry was selected for study in the work described here. An experimental procedure for the characterisation of composite materials is documented by Riedel et al. [ADAMMO – advanced material damage models for numerical simulation codes. ESA CR(P) 4397, EMI report I 75/03, Freiburg; October 31, 2003.]. The test results from the CFRP of the current study allow for the derivation of an experimentally based orthotropic continuum material model data set that is capable of predicting the mechanical behaviour of CFRP under hypervelocity impact. Such a data set was not previously available. In the work by Riedel et al. [Hypervelocity impact damage prediction in composites: part II – experimental investigations and simulations. International Journal of Impact Engineering, 2006;33:670–80.] an orthotropic material data set was used for modelling HVI on AFRP (aramid fibre reinforced plastic), which shows relatively high deformability before failure. The enhancements of the modelling approaches in previous studies [Riedel W, Harwick W, White DM, Clegg RA. ADAMMO – advanced material damage models for numerical simulation codes. ESA CR(P) 4397, EMI report I 75/03, Freiburg; October 31, 2003. Hiermaier S, Riedel W, Hayhurst C, Clegg RA, Wentzel C. AMMHIS – advanced material models for hypervelocity impact simulations. Final report, EMI report E 43/98, ESA CR(P) 4305, Freiburg; July 30, 1999.] necessary to model brittle CFRP are specified. An experimental hypervelocity impact campaign was performed at two different two-stage light gas guns which encompassed both normal and oblique impacts for a range of impact velocities and projectile diameters. Validation of the numerical model is provided through comparison with the experimental results. For that purpose measurements of the visible damage of the face sheets and of the HC core are conducted. In addition, the numerically predicted damage within the CFRP is compared to the delamination areas found in ultrasonic scans.  相似文献   

4.
The fragment hazard resulting from a nearby explosion is a major concern in the design of structures which may be subjected to blast loads. This paper presents a predictive method based on the theories of continuum damage mechanics and mechanics of micro-crack development, and numerical simulation to determine the probabilistic fragment size distribution and the launch distances. Theoretical derivations are presented to calculate fragment distribution. The fragmentation process is modeled according to the crack initiation and propagation, which depend on the material damage levels and are estimated using continuum damage mechanics theory. The proposed method involves two steps. First a finite element model is developed to estimate the material damage, fragment distribution and the ejection velocity. Then a simple algorithm is used to predict the fragment trajectory and the launch distance based on the fragment size and the ejection velocity. A masonry wall is used as an example in this study. The wall is modeled with both the distinctive consideration of the brick and mortar material properties and the homogenized masonry material properties. The reliability and efficiency of using the homogenized masonry material model in predicting the masonry wall damage and fragmentation are proven. The program AUTODYN is used in this study to conduct the numerical simulations with the proposed models linked to it as user subroutines. The numerical results indicate that the masonry fragments approximately follow the Weibull distribution, which is consistent with some empirical fragment distributions. The proposed method avoids using erosion technique, which inevitably results in a loss of fragment mass, and avoids discretizing the structure into particles or predefining the failure planes, which may lead to unrealistic prediction of damage propagation and evolution and therefore inaccurate fragmentation process and fragment size distributions.  相似文献   

5.
超高速碰撞多层板结构破碎效应研究对空间碎片防护及动能武器毁伤效应研究有着重要意义。采用ANSYS/AUTODYN程序的SPH方法,对超高速碰撞碎片云的形成过程进行了数值模拟,某典型时刻一次及二次碎片云形貌的数值模拟结果与实验结果吻合较好,验证了计算方法和模型参数的正确性。在此基础上采用数值模拟方法,对钨合金、轧制均质装甲(Rolled Homogeneous Armor,RHA)及LY12铝三种材料的圆柱形弹体超高速碰撞薄板的破碎规律进行了研究,基于量纲分析方法得出了弹体破碎长度随弹靶材料特性、弹靶尺寸及初始撞击速度变化的关系式。并研究了钨合金及RHA两种材料的长杆弹对八层RHA板结构的超高速碰撞效应。  相似文献   

6.
椭球弹丸超高速撞击防护屏碎片云数值模拟   总被引:6,自引:0,他引:6  
低地球轨道的各类航天器易受到微流星体及空间碎片的超高速撞击.本文采用AUTODYN软件进行了椭球弹丸超高速正撞击及斜撞击防护屏碎片云的数值模拟.给出了三维模拟的结果.研究了在相同质量的条件下,不同长径比椭球弹丸以不同速度和入射角撞击防护屏所产生碎片云的特性,并与球形弹丸撞击所应产生的碎片云特性进行了比较.结果表明:在相同的速度下,不同长径比椭球弹丸撞击的碎片云形状、质量分布和破碎程度是不同的,随撞击入射角的增加弹丸的破碎程度增大,滑弹碎片云的数量增加;随撞击速度的增加,弹丸的破碎程度也增加.  相似文献   

7.
A solution methodology to predict the residual velocity of a hemispherical-nose cylindrical projectile impacting a composite sandwich panel at high velocity is presented. The term high velocity impact is used to describe impact scenarios where the projectile perforates the panel and exits with a residual velocity. The solution is derived from a wave propagation model involving deformation and failure of facesheets, through-thickness propagation of shock waves in the core, and through-thickness core shear failure. Equations of motion for the projectile and effective masses of the facesheets and core as the shock waves travel through sandwich panel are derived using Lagrangian mechanics. The analytical approach is mechanistic involving no detail account of progressive damage due to delamination and debonding but changes in the load-bearing resistance of the sandwich panel due to failure and complete loss of resistance from the facesheets and core during projectile penetration. The predicted transient deflection and velocity of the projectile and sandwich panel compared fairly well with results from finite element analysis. Analytical predictions of the projectile residual velocities were also found to be in good agreement with experimental data.  相似文献   

8.
The extension of damage in composites during hypervelocity impact (HVI) of space debris is controlled by failure thresholds and subsequent energy consumption during damage growth. Characterisation and modelling of the material under partially and fully damaged states is essential for the prediction of HVI effects on fibre-composite structures. Improved experimental and numerical analysis techniques have been developed and are summarised in an accompanying paper. The present paper deals with the establishment of two precise damage experiments under HVI conditions as a validation basis for numerical simulations: The first type consists of space debris impact configurations optimised for damage evaluation and the second experiments reproduce HVI strain rates and compressions in plate impact. Coupling of damage analysis techniques (visual, ultrasonic, residual strength) to quantify different aspects of failure has been achieved. Numerical simulations using the commercial hydrocode AUTODYN in mesh-based and SPH formulations are presented using the material model and data described in the accompanying paper.  相似文献   

9.
10.
11.
The investigation of the mechanical response of fibre-reinforced composite laminates under impact loads can be very difficult due to the occurrence of simultaneous failure phenomena. Indeed, as a consequence of low velocity impacts, intra-laminar damages, like fibre and matrix cracking, and inter-laminar damages, such as delaminations, can take place simultaneously. These damage mechanisms can lead to significant reductions in strength and stability of the composite structure. In this paper a joint numerical-experimental study is proposed which, by means of non-destructive testing techniques (Ultra-sound and thermography) and non-linear explicit FEM analyses, aims to completely characterise the impact induced damage in composite laminates under low velocity impacts. Indeed the proposed numerical tool has been used to improve the understanding of the experimental data obtained by Non-Destructive Techniques. Applications on samples tested according to the AECMA (European Association of Aerospace Manufacturers) prEn6038 standard at three different impact energies are presented. The interaction between numerical and experimental investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the inter-laminar damage formation and evolution.  相似文献   

12.
紧缩场蜂窝夹层反射面板材料参数优化反求   总被引:1,自引:0,他引:1       下载免费PDF全文
紧缩场高精度蜂窝夹层结构反射面板由经特殊工艺处理的铝蜂窝芯和表层铝板胶接而成 , 解析计算和材料力学性能试验很难准确获得该夹层板的材料性能参数。本文中采用数值2试验混合模型方法对该种夹层板的等效材料性能参数进行了优化反求。正向分析采用有限元方法 , 逆向分析采用遗传算法和梯度法组合优化算法。正、 逆分析过程的无缝集成和组合优化算法策略使反求效率明显提高。试验验证表明 , 采用反求方法获得的材料性能参数能够精确反应该夹层板的弹性本构关系 , 建立在该材料参数基础上的有限元模型具有理想的精度。  相似文献   

13.
14.
陈峰  袁一彬  刘洋  孙学超 《包装工程》2024,45(9):250-260
目的 以钎焊高温合金蜂窝夹层板为研究对象,分析其在弹丸高速冲击作用下的力学性能。方法 采用轻气炮冲击加载试验结合有限元模拟,对蜂窝夹层板开展不同冲击强度下的动态响应和失效研究。开展含高速冲击损伤的蜂窝夹层板侧压试验,研究损伤模式对剩余强度的影响。结果 冲击强度对夹层板的失效过程和失效模式有着明显的影响,当冲击条件不足以使得迎弹面发生侵彻时,夹层板失效为表面压痕损伤;随着冲击强度的提高,出现不同程度的局部芯层压缩;当冲击强度大于临界值时,迎/背弹面陆续被侵彻,夹层板出现侵入损伤及贯穿损伤。结论 高速冲击损伤使得蜂窝夹层板的侧压失效模式,由理想塑性屈曲转变为局部失稳,侧压极限载荷大幅降低。  相似文献   

15.
纤维增强复合材料三明治板破片穿甲数值仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
研究破片对(由钢板、纤维增强复合材料板及钢板叠合而成)纤维增强复合材料三明治板穿甲过程中能量转化规律。进行破片模拟弹丸(FSP)对不同结构三明治板高速穿甲数值仿真,获得FSP破片对16种三明治板的弹道极限,并与实验结果对比验证数值仿真的可信度。通过分析数值仿真结果,进一步研究破片临界贯穿条件下纤维增强复合材料三明治板各组成部分吸能比率与结构尺寸相关性。结果表明,不同厚度夹层板的吸能比率恒定(芳纶纤维10.41%,玻璃纤维2.68%),夹层板内能随厚度的增加呈二次函数增加。由此获得破片对纤维增强复合材料三明治板弹道极限速度计算方法。  相似文献   

16.
In this paper, a numerical study has been carried out on skin delamination and skin-stringer debonding growth in a composite wing-box under compressive loading conditions. The adopted numerical models use the Virtual Crack Closure Technique to simulate the inter-laminar damage evolution and the numerical analyses have been performed by means of the FEM code ABAQUS and B2000++. The obtained numerical results have been assessed and compared each other in terms of delaminated area evolution, delamination growth initiation load and strain distributions. In order to investigate the effectiveness of the adopted numerical platforms in predicting the evolution of inter-laminar damages, comparisons with experimental data, in terms of load displacement curves and strains in the debonding area, have been also introduced.  相似文献   

17.
The objective of this research is to develop a modeling and simulation approach for predicting the thermo-mechanical damage of composite materials subjected to fire environments. A 3D thermal damage model is developed for glass-reinforced polymer composite materials subject to high temperature and radiative environments. Homogenization methods are used to formulate the damaged material in terms of fiber, resin and char. The thermal damage model is implemented in Abaqus via an overlaid element approach. The solution of the mechanical response uses the existing functions in Abaqus for large-displacement analysis. Composite sandwich panels with balsa core are examined. Reasonable agreement in temperature is obtained between predictions and available experimental data. For the sandwich panels, delamination failure is predicted at the sandwich interface – consistent with the experiments. Comparisons of time-to-failure of the sandwich panel show the predictions are reasonable.  相似文献   

18.
弹丸超高速撞击半无限厚铝板数值模拟   总被引:2,自引:1,他引:1  
微流星体及空间碎片的超高速撞击威胁着长寿命、大尺寸航天器的安全运行,导致其严重的损伤和灾难性的失效.撞击损伤特性研究是航天器防护设计的一个重要问题.本文采用AUTODYN软件的Lagrange法对半无限铝板的超高速斜撞击和与其具有相同法向速度的正撞击进行了模拟,给出了不同撞击角和不同法向速度下半无限厚铝板弹坑深度、宽度、长度的变化规律及多弹坑的形成过程,并与经验方程进行了比较分析.结果发现:随撞击角的增加,弹坑的深度和宽度减小,而弹坑的长度增加;随撞击速度的增加弹坑的直径和深度增加;在撞击角大于70度时出现多弹坑.  相似文献   

19.
战斗部爆炸时会产生诸多毁伤元,爆炸破片是其主要的毁伤参量之一,其中破片的飞行速度是评价破片毁伤威力大小的重要指标,研究战斗部爆炸驱动破片能力对于评价战斗部毁伤威力具有重要意义.利用AUTODYN建立不同TNT当量爆炸驱动破片能力的数值仿真模型进行实验研究.建立相应爆炸驱动装置模型,设置TNT当量分别为34 g,50 g...  相似文献   

20.
In aeronautics, passenger safety and reliability of structures are essential aspects. In the specific case of helicopters, blades are subjected to impact loadings. Modeling these phenomena continue to be difficult and experimental tests often replace the prediction. The following work will focus on the experimental and numerical study of an oblique impact on the skin of the blade. It is equivalent in a first approach to an impact on a sandwich panel made up of a foam core and a thin woven composite skin. The objectives are to identify the mechanisms of damage in the skin for this kind of loading and to develop a representative modeling of the chronology of damage adapted to the modeling of the complete structure. Thus, a semi-continuous F.E. explicit modeling has been developed. It relies on the development of a specific damageable element at the bundles scale. Satisfactory numerical results are obtained. They allow the identification of the damage mechanism of the woven skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号