首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochromic WO3 thin films active in the IR region   总被引:1,自引:1,他引:0  
Herein, we investigate the electrochromic performances in the infrared (IR) region, in particular in the midwavelength (MW, 3–5 μm) and long wavelength (LW, 8–12 μm) bands, of WO3 thin films grown by RF-sputtering and pulsed laser deposition. For an optimized voltage window, 200 nm room temperature thin films are the most efficient in the MW band, with the highest contrast in reflection, namely 35%, whereas thicker films, typically 500 nm, are required in the LW band. At 400 °C films show contrasts in reflection lower than 10%, surprisingly associated with a reasonable insertion amount of 0.20. Indeed, no straight correlation between the electrochemical and the optical properties in the IR region was established.  相似文献   

2.
Thin films of electrochromic WO3 were prepared via wet chemical deposition. Precursor solutions containing WOCl4 in isopropanol were used and films were deposited by spin coating. Various techniques were used for characterization of the films such as Rutherford backscattering spectroscopy (RBS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-VIS spectroscopy and electrochemical methods. Composition, structural characteristics and electrochromic properties were studied as function of the curing temperature, in the range 80–500°C.  相似文献   

3.
Aiming at improving the electrochromic properties of NiO thin films, well-known as anodic counter electrodes, the effect of tungsten addition was investigated. Ni–W–O thin films were deposited by pulsed laser deposition in optimized conditions, namely a 10−1 mbar oxygen pressure and a room temperature substrate. The presence of W led to a progressive film amorphization. An increase in cyclability for Ni–W–O (5%t WO3) electrode, cycled in KOH 1 M electrolyte, was associated with a limited dissolution of the oxidized phases with tungsten addition. HRTEM investigations of cycled films revealed that the stabilization is correlated to the existence of an α(II) hydroxide phase.  相似文献   

4.
CuxNi1−xO electrochromic thin films were prepared by sol–gel dip coating and characterized by XRD, UV–vis absorption and electrochromic test. XRD results show that the structure of the Cux Ni1−xO thin films is still in cubic NiO structure. UV–vis absorption spectra show that the absorption edges of the CuxNi1−xO films can be tuned from 335 nm (x = 0) to 550 nm (x = 0.3), and the transmittance of the colored films decrease as the content of Cu increases. CuxNi1−xO films show good electrochromic behavior, both the coloring and bleaching time for a Cu0.2Ni0.8O film were less than 1 s, with a variation of transmittance up to 75% at the wavelength of 632.8 nm.  相似文献   

5.
Now-a-days a large number of extensive research has been focused on electrochromic oxide thin films, owing to their potential applications in smart windows, low cost materials in filters, low cost electrochemical devices and also in solar cell windows. Among the varieties of electrochromic transition metal oxides, the molybdenum oxide (MoO3) and tungsten oxide (WO3), form a group of predominant ionic solids that exhibit electrochromic effect. The electrochromic response of these materials are aesthetically superior to many other electrochromic materials, because WO3 and MoO3 absorb light more intensely and uniformly. In the present case, we have discussed about the electrochromic behaviour of electron beam evaporated MoO3 films. Moreover, the MoO3 film can also be used as a potential electro-active material for high energy density secondary lithium ion batteries; because it exhibits two-dimensional van der Waals bonded layered structure in orthorhombic phase. The films were prepared by evaporating the palletized MoO3 powder under the vacuum of the order of 1 × 10−5 mbar. The electrochemical behaviour of the films was studied by intercalating/deintercalating the K+ ions from KCl electrolyte solutions using three electrode electrochemical cell by the cyclic-voltammetry technique. The studies were carried out for different scanning rates. The films have changed their colour as dark blue in the colouration process and returns to the original colour while the bleaching process. The diffusion coefficient values (D) of the intercalated/deintercalated films were calculated by Randle's Servcik equation. The optical transparency of the coloured and bleached films was studied by the UV–Vis–NIR spectrophotometer. The change in bonding assignment of the intercalated MoO3 films was studied by FTIR spectroscopic analysis. A feasible study on the effect of substrate temperatures and annealing temperatures on optical density (OD) and colouration efficiency of the films were discussed and explored their performance for the low cost electrochemical devices.  相似文献   

6.
Laminated electrochromic (EC) devices are becoming increasingly important for making “smart” windows and switchable displays. Mostly, polymeric Li+ ionic conductors in combination with vacuum deposited active electrochromic and counter-electrode films are used. In this paper we report on the development of all sol–gel EC devices, that is, those where all three internal layers are prepared via the sol–gel route, including the ionically conductive inorganic–organic hybrid (ormolyte). The electrochemical and optical properties of EC devices are presented and the cycling stability and reversibility of their optical modulation assessed. The results show that WO3/ormolyte/SnO2 : Mo, WO3/ormolyte/SnO2 : Sb, WO3/ormolyte/SnO2 : Sb : Mo, Nb2O5/ormolyte/SnO2 : Sb : Mo and WO3/ormolyte/LiCo-oxide exhibit a transmission modulation dependent on the thickness of the active electrochromic and counter-electrode films and the thickness of the ormolyte layer. Electrochemical and optical properties of individual films are described and correlated with the stability of the all sol–gel EC devices.  相似文献   

7.
Thin films of tungsten oxide (WO3) were deposited onto glass, ITO coated glass and silicon substrates by pulsed DC magnetron sputtering (in active arc suppression mode) of tungsten metal with pure oxygen as sputter gas. The films were deposited at various oxygen pressures in the range 1.5×10−2−5.2×10−2 mbar. The influence of oxygen sputters gas pressure on the structural, optical and electrochromic properties of the WO3 thin films has been investigated. All the films grown at various oxygen pressures were found to be amorphous and near stoichiometric. A high refractive index of 2.1 (at λ=550 nm) was obtained for the film deposited at a sputtering pressure of 5.2×10−2 mbar and it decreases at lower oxygen sputter pressure. The maximum optical band gap of 3.14 eV was obtained for the film deposited at 3.1×10−2 mbar, and it decreases with increasing sputter pressure. The decrease in band gap and increase in refractive index for the films deposited at 5.2×10−2 mbar is attributed to the densification of films due to ‘negative ion effects’ in sputter deposition of highly oxygenated targets. The electrochromic studies were performed by protonic intercalation/de-intercalation in the films using 0.5 M HCl dissolved in distilled water as electrolyte. The films deposited at high oxygen pressure are found to exhibit better electrochromic properties with high optical modulation (75%), high coloration efficiency (CE) (141.0 cm2/C) and less switching time at λ=550 nm; the enhanced electrochromism in these films is attributed to their low film density, smaller particle size and larger thickness. However, the faster color/bleach dynamics is these films is ascribed to the large insertion/removal of protons, as evident from the contact potential measurements (CPD) using Kelvin probe. The work function of the films deposited at 1.5 and 5.2×10−2 mbar are 4.41 and 4.30 eV, respectively.  相似文献   

8.
Thin films of tungsten oxide, molybdenum oxide and mixed MoO3–WO3 oxides were obtained by atmospheric pressure chemical vapor deposition (CVD). All the films were prepared using identical technological parameters and through investigation of the optical properties of as deposited and annealed at 400°C a comparative study is reported. Raman, IR and VIS spectrophotometry and spectral ellipsometry methods were used. The mixed MoO3–WO3 films have higher optical absorption with maxima at a closer position with respect to the human eye sensitivity peak at 2.5 eV. The observed electrochromic effect is better expressed in the mixed films; the electrical charge inserted is higher.  相似文献   

9.
Optical properties of electrochromic all-solid-state devices   总被引:1,自引:0,他引:1  
We have investigated the optical properties of an all-thin-film electrochromic device, with a thin film of ZrO2 acting as an ion conductor. The device also employed electrochromic layers of amorphous or crystalline WO3 and NiVxOyHz. Transmission (T) and reflection (R) spectra were recorded in the wavelength range 300–2500 nm at different intercalation levels, both for single films and complete devices. The results show that T decreases significantly upon intercalation in the WO3 thin films as well as in the devices. The reflectance only shows minor changes.  相似文献   

10.
CeO2–TiO2–ZrO2 thin films were prepared using the sol–gel process and deposited on glass and ITO-coated glass substrates via dip-coating technique. The samples were heat treated between 100 and 500 °C. The heat treatment effects on the electrochromic performances of the films were determined by means of cyclic voltammetry measurements. The structural behavior of the film was characterized by atomic force microscopy and X-ray diffraction. Refractive index, extinction coefficient, and thickness of the films were determined in the 350–1000 nm wavelength, using nkd spectrophotometry analysis.Heat treatment temperature affects the electrochromic, optical, and structural properties of the film. The charge density of the samples increased from 8.8 to 14.8 mC/cm2, with increasing heat-treatment temperatures from 100 to 500 °C. It was determined that the highest ratio between anodic and cathodic charge takes place with increase of temperature up to 500 °C.  相似文献   

11.
In this work, we report electrochromic properties of polycrystalline WO3 nanowire electrodes fabricated on an indium tin oxide (ITO)-coated substrate by electrospinning method. The electrochromic and electrical properties of the electrospun WO3 nanowire electrodes are investigated and compared with those of conventional WO3 thin film electrodes. As a result, the one-dimensional WO3 nanowires show faster charge transfer and optical responses with a bleaching time of 1.0 s and a coloring time of 4.2 s than the thin film electrodes. The coloration efficiency of the electrospun WO3 nanowires is also greater (56 cm2/C) by 21% than the thin film along with an improved memory effect after coloring process.  相似文献   

12.
We have prepared and tested integrated low-emittance–electrochromic devices using ZnS/Ag/ZnS coatings as transparent electrodes and WO3 films as electrochromic layers. These devices exhibit adequate coloration and can withstand more than 1000 bleaching-coloration cycles, provided that the metal layer is protected from the liquid electrolyte by a combination of thick dielectric films (ZnS/WO3). We have also predicted the optimum configuration of the WO3/ZnS/Ag/ZnS/Glass stack that maximizes transmission in the visible. Integration of low emittance and electrochromic films into one device could improve the performance and reduce the cost of electrochromic windows.  相似文献   

13.
A simple method was developed to fabricate tungsten oxide (WO3−x) nanowires based electrochromic devices. The WO3−x nanowires are grown directly from tungsten oxide powders in a tube furnace. The WO3−x nanowires have diameters ranging from 30 to 70 nm and lengths up to several micrometers. The WO3−x nanowires based device has short bleach-coloration transition time and can be grown on a large scale directly onto an ITO-coated glass that makes it potential in many electrochromic applications. The structure, morphology, and composition of the WO3−x nanowires were characterized using the scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometer. The optical and electrochromic performance of the nanowires layer under lithium intercalation was studied in detail by UV–VIS–NIR spectroscope and cyclic voltameter.  相似文献   

14.
Copper indium diselenide polycrystalline thin films of p-, i- and n-type electrical conductivity were grown using a one-step electrodeposition process in a single bath. The bulk structure and the stoichiometry of the layers were determined using X-ray diffraction and X-ray fluorescence. The material composition was correlated with the electrical conductivity type variation, detected by the photoelectrochemical cell. Atomic force microscopy analysis showed copper-rich films deposited at low cathodic potentials (0.6 V vs Ag/AgCl) are of spherical and granular morphology and the grain sizes were 0.3–0.5 μm, while stoichiometric CIS films deposited at 1.0 V vs Ag/AgCl have grain sizes of 0.1–0.4 μm. The initial studies of optoelectronic properties (Voc, Jsc and FF) of the four-layer solar cell devices (glass/FTO/n-CdS/n-CIS/i-CIS/p-CIS/Au) are presented.  相似文献   

15.
Electrochromic (EC) “smart” windows for buildings represent an effective way to modulate the intensity of incoming solar radiation. While it is accepted that WO3 films represent the best option for the working electrode, the choice of the best counter-electrode is still debatable. Optical properties of counter-electrodes such as Ce, Fe, V and Sn oxides are presented. Electrochromic windows were made with a sol–gel WO3 active colouring film (150°C), Ce, Fe, V oxide counter-electrodes and a sol–gel organic–inorganic hybrid (Li+ormolyte) ion conductor. The electrochromic responses of these devices predicted from the charge capacities, photopic transmittances and coloration efficiencies of individual films are compared with measured values.  相似文献   

16.
A new nanocomposite WO3 (NWO) film-based electrochromic layer was fabricated by a spray and electroplating technique in sequence. An indium–tin oxide (ITO) nanoparticle layer was employed as a permanent template to generate the particular nanostructure. The structure and morphology of the NWO film were characterized. The optical and electrochromic properties of the NWO films under lithium intercalation are described and compared to the regular WO3 film. The NWO films showed an improved cycling life and an improved contrast with compatible bleach-coloration transition time, owing to the larger reactive surface area. The nanocomposite WO3 film-based electrochromic device (NWO-ECD) was also successfully fabricated. Most importantly, the NWO film can be prepared on a large scale directly onto a transparent conductive substrate, which demonstrates its potential for many electrochromic applications, especially, smart windows, sunroof and displays.  相似文献   

17.
In this paper, we show gasochromic and electrochromic switching properties of Pd top capped magnesium–titanium (Mg–Ti) thin films prepared by DC magnetron sputtering. These films show excellent switchable mirror properties. By exposing to 4% H2 in Ar, Pd (4 nm)/Mg0.82Ti0.18 (40 nm) film changed from the metallic state to the transparent state drastically within 5 s. By exposing to air, it goes back to the metallic state within 60 s. The transmittance spectrum in the hydride state is quite flat in the wavelength range from 400 to 2500 nm. It looks complete color neutral and its chromaticity coordinates are x=0.326 and y=0.340. Simple electrochromic device of Mg–Ti thin film using a liquid electrolyte works very well. It can be switched between the mirror state and the color-neutral transparent state.  相似文献   

18.
Tungsten oxide (WO3) films were prepared on indium tin oxide coated glass substrates and Corning glass substrates by sol–gel deposition. The samples coated on the glass substrates have been irradiated to approximately 0.93–21.1 kGy dose using Co-60 gamma radioisotope. Co-60 radioisotope changed the color of the WO3 films on samples after the irradiation. Their color turned to brownish color tones depending on the applied dose. Optical and structural properties of the samples are examined for both gamma irradiated and unirradiated coated samples. To compare the effect of the irradiation on the electrochromic properties, additional measurements were done with WO3 coated on ITO substrates irradiated by gamma rays, separately. The coated films were characterized by atomic-force microscopy, NKD-analyzer and cyclic voltammograms. The influence of irradiation on the spectra of transmittance and on the surface structure has been investigated. These showed that the surface texture was changed dramatically by the irradiation. The electrochemical insertion and removal of lithium and proton ions was carried-out using 1 M LiClO4 propylene carbonate (PC) electrolyte and 1 M KCl in aqueous solutions,respectively.  相似文献   

19.
CdO and Cu2O thin films have been grown on glass substrates by chemical deposition method. Optical transmittances of the CdO and Cu2O thin films have been measured as 60–70% and 3–8%, respectively in 400–900 nm range at room temperature. Bandgaps of the CdO and Cu2O thin films were calculated as 2.3 and 2.1 eV respectively from the optical transmission curves. The X-ray diffraction spectra showed that films are polycrystalline. Their resistivity, as measured by Van der Pauw method yielded 10−2–10−3 Ω cm for CdO and approximately 103 Ω cm for Cu2O. CdO/Cu2O solar cells were made by using CdO and Cu2O thin films. Open circuit voltages and short circuit currents of these solar cells were measured by silver paste contacts and were found to be between 1–8 mV and 1–4 μA.  相似文献   

20.
 There is a considerable interest in the research and development of materials and devices, that can be used for optical switching of large-scale glazings. Several potential switching technologies are available for glazings, including those based on electrochromic, thermochromic and photochromic phenomena. One of the most promising technologies for optical switching devices is electrochromism (EC). In order to improve the electrochromic properties of tungsten oxide, we have investigated the effect of phosphorous insertion on the electrochromic behavior of oxide films prepared by the sol–gel process.The kinetics and thermodynamics of electrochemical intercalation of lithium into LixWO3 and LixWO3:P films prepared by the sol–gel process were investigated. The standard Gibbs energy for lithium intercalation was calculated. The chemical diffusion coefficients, D, of lithium intercalation into oxide, were measured by galvanostatic intermittent titration technique (GITT), as functions of the depth of lithium intercalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号